
QuASoQ 2023
11th International Workshop on
Quantitative Approaches to Software Quality

co‐located with APSEC 2023
Seoul, South Korea, December 4th , 2023

Editors:

Horst Lichter, RWTH Aachen University, Germany
Selin Aydin, RWTH Aachen University, Germany
Thanwadee Sunetnanta, Mahidol University, Thailand
Toni Anwar, University Petronas, Malaysia

PREPRINT

Coyote C++: An Industrial-Strength Fully Automated Unit
Testing Tool
Sanghoon Rho1, Philipp Martens1, Seungcheol Shin1, Yeoneo Kim1, Hoon Heo2 and
SeungHyun Oh2

1CODEMIND Corporation, Seoul, South Korea
2Hyundai KEFICO Corporation, Gyeonggi-Do, South Korea

Abstract
Coyote C++ is an automated testing tool that uses a sophisticated concolic-execution-based approach to realize fully automated
unit testing for C and C++. While concolic testing has proven effective for languages such as C and Java, tools have struggled
to achieve a practical level of automation for C++ due to its many syntactical intricacies and overall complexity. Coyote
C++ is the first automated testing tool to breach the barrier and bring automated unit testing for C++ to a practical level
suitable for industrial adoption, consistently reaching around 90% code coverage. Notably, this testing process requires no
user involvement and performs test harness generation, test case generation and test execution with “one-click” automation.
In this paper, we introduce Coyote C++ by outlining its high-level structure and discussing the core design decisions that
shaped the implementation of its concolic execution engine. Finally, we demonstrate that Coyote C++ is capable of achieving
high coverage results within a reasonable timespan by presenting the results from experiments on both open-source and
industrial software.

Keywords
automated unit test, coverage testing, concolic execution, C++, LLVM

1. Introduction
The significance of testing in software engineering is con-
tinuously escalating, necessitating thorough validation
methods such as white-box testing. However, given the
rapid increase in code scale and complexity in the soft-
ware industry, white-box testing can be time-consuming
and resource-intensive[1], often leading to budget con-
straints. For this reason, there has been a long-standing
need for automation in white-box testing.
Lately, efforts to automate white-box unit testing are

approaching practical feasibility, with automated test-
ing showing promising results for Java [2, 3], C [4, 5, 6],
binary code [7, 8], and a few other programming lan-
guages [9, 10, 11]. Conversely, adopting this technol-
ogy for C++ has proven to be challenging due to the
language’s unique features and overall complexity [12].
Implicitly invoked copy or move constructors and tem-
plates with all their intricacies are just two examples
of C++ language features that are especially difficult to
handle in automated white-box unit testing.

In this paper, we introduce Coyote C++, an automated
unit testing tool designed for C/C++. With a single click,

QuASoQ 2023: 11th International Workshop on Quantitative
Approaches to Software Quality, December 04, 2023, Seoul, South
Korea
Envelope-Open rho@codemind.co.kr (S. Rho); philipp.m@codemind.co.kr
(P. Martens); shin@codemind.co.kr (S. Shin);
yeoneo@codemind.co.kr (Y. Kim); hoon.heo@hyundai-kefico.com
(H. Heo); seunghyun.oh@hyundai-kefico.com (S. Oh)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Coyote C++ streamlines the entire testing process, from
harness generation and test case generation to test execu-
tion. The automated test case generation is based on con-
colic execution, a modern variant of symbolic execution,
and features exquisite harness generation capabilities.
The paper outlines the underlying technologies on

which Coyote C++ achieves a practical level of high cov-
erage through test case generation. In order to practically
utilize automated unit testing tools in the field, we pro-
pose that a testing speed of around 10,000 logical LOC of
executable statements per hour with statement coverage
above 90% and branch coverage above 80% should be
desirable. Currently, Coyote C++ is achieving elevated
levels of coverage and performance according to these
criteria, and is thus being effectively applied and utilized
by our customers in the automotive industry.
The rest of this paper is organized as follows. We

first look at research on concolic-execution-based unit
testing and then examine design decisions made by exist-
ing systems to build efficient concolic execution engines
in related works. Next, we provide an overview of the
implementation of Coyote C++, and present test results
obtained from open-source projects and real-world indus-
trial projects. Finally, we conclude the paper by outlining
our plans for further improving Coyote C++.

2. Related works
Symbolic execution [13] is a static program analysis tech-
nique that interprets programs with symbolic values

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

mailto:rho@codemind.co.kr
mailto:philipp.m@codemind.co.kr
mailto:shin@codemind.co.kr
mailto:yeoneo@codemind.co.kr
mailto:hoon.heo@hyundai-kefico.com
mailto:seunghyun.oh@hyundai-kefico.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

rather than concrete values. Due to scalability issues
with symbolic execution, this technique has been ex-
tended into concolic execution [5, 6]. The main idea of
concolic execution is to compute test inputs from path
conditions which are obtained by tracking both concrete
values and symbolic values. Concolic execution has been
anticipated in the automated testing domain due to its
known success in test case generation. However, this
research has not yet reached a practical level of test gen-
eration for whole programs.
Nevertheless, concolic execution is known to be re-

markably successful in unit test generation, e.g. for
Java [2, 3] and C [4, 5, 6]. For C++ however, automated
testing has still been far from viable for industrial pur-
poses despite recent research efforts [14, 12].

When implementing concolic execution there aremany
options for realizing various aspects of the engine [15].
Especially the engine’s execution mode, analysis target,
handling of the path explosion problem, and its memory
model can largely affect the performance of the concolic
execution engine in terms of coverage and execution
time.

2.1. Online/Offline Mode
Concolic execution can be implemented in online or of-
fline mode. In online mode, the concolic execution en-
gine explores multiple paths in a single run by forking on
branch points. The advantage of this method is that there
is no need to re-execute the common prefixes of multi-
ple paths. However, it requires a substantial amount of
memory to store all the states of multiple paths. Offline
mode on the other hand explores only one path in a sin-
gle run. This method requires less memory than online
mode, making it better suited for parallelization. How-
ever, since offline mode always starts at the beginning
of the program for every path, it spends a considerable
amount of time on re-examining common path prefixes.
Prominent tools using online mode are KLEE [16], May-
hem [17], and S2E [18], whereas SAGE [7] utilizes offline
concolic execution.

2.2. Emulation/Instrumentation
There are two main methods for collecting information
about the execution path taken during concrete execution
of the program under test. The first method performs
symbolic execution at the same time as concrete exe-
cution by running the program under test inside of an
emulator such as QEMU [19]. The second method in-
stead instruments the program under test with code that
handles symbolic execution and the collection of informa-
tion about the concrete execution of the program. Well-
known emulator-based tools are angr [20] and KLEE [16],

while QSYM [21] and CREST [22] are instrumentation-
based.

2.3. Mitigating Path Explosion
Another important design decision is how to deal with the
path explosion problem commonly encountered when
performing concolic execution on programs with com-
plex control flow. In such situations, the search space
of concolic execution can grow exponentially due to the
many possible combinations of branches. To avoid this is-
sue, concolic execution engines use a variety of heuristic
search strategies. Notable search strategies include DFS
(depth-first search), BFS (breadth-first search), random
path selection, coverage-optimized search, and adaptive
heuristics [15, 23].

2.4. Memory Model
When modelling the symbolic memory of a concolic exe-
cution engine, one can choose between treating memory
addresses as symbolic or concrete values. The symbolic
approach can theoretically handle all possible paths, but
this approach may cause path constraints to become too
complex for current SMT solvers. On the other hand, us-
ing concrete addresses might not cover all possible paths
due to overly simplified path conditions. In practice, a
fully symbolic model is used by tools like KLEE [16], and
a concrete address model is used by SAGE [7] among oth-
ers. Additionally, there are tools like Mayhem [17] that
use a combination of symbolic and concrete addressing
schemes.

3. The Design of Coyote C++

3.1. Overview
In this chapter, we present an overview of Coyote C++
and discuss the core decisions that influenced its design.
As shown in the diagram in Fig. 1, the Coyote C++ tool
is divided into two main parts. The first part builds ex-
ecutable test files based on harness generation, while
the second part handles generating test cases through
concolic execution.
In the first phase, Coyote C++ uses a harness genera-

tor module to automatically generate test stubs and test
drivers for test execution and inserts instrumentation
code for concolic execution. This instrumentation is per-
formed on LLVM IR level. Next, the binary generation
module compiles the created testbed to executable files
used in the second part.
While running the executable test file in the second

phase, the instrumentation code produces trace files con-
taining information about the concrete program execu-
tion on the level of LLVM IR instructions. These trace

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Figure 1: Overview of Coyote C++.

files are then used to reconstruct their respective execu-
tion paths, and with this information symbolic execution
is performed on the LLVM IR level to generate new test
input data. When this concolic execution cycle termi-
nates, the achieved test coverage is calculated based on
the generated trace files.

3.2. Design Decisions of Coyote C++

While implementing Coyote C++, many important de-
sign decisions had to made. In the modules responsi-
ble for the testable binary generation, these decisions
were generally made with the goal of enabling a wide
range of transformations on intermediate code models
while retaining a sufficiently strong connection between
these models and the original source code. Most design
decisions affecting the testcase generation phase were
strongly influenced by the need to find a suitable tradeoff
between the achieved code coverage and performance in
terms of test time or resource consumption.

A fundamental design decision made in Coyote C++ is
using LLVM IR as its symbolic execution target. This al-
lows for more precision than doing source level symbolic
execution while retaining more information about the
original source code that would be lost when lowering
even further to the assembly level. Also, using LLVM as
a foundation for Coyote C++ allows for greater freedom
in code transformations during harness generation, by-
passing syntactic constraints present on the source code
level.

We decided to implement offline testing by inserting in-
strumentation code into the LLVM IR code of the testbed

during testable binary generation. The main reason for
choosing offline testing over online testing is that it is
more suitable for parallelization, which is essential for
providing good testing performance. Additionally, offline
testing is more advantageous from a memory manage-
ment standpoint.
A key factor for achieving high code coverage is the

search strategy that controls in which order the possi-
ble execution paths of a program are explored. During
testcase generation, the test files are initially executed
with all test inputs set to default values. The trace files
generated from this are then analyzed using concolic
execution techniques to create new test case inputs for
visiting new paths. As our search strategy for exploring
of candidate paths, we adopted a hybrid approach that
combines CCS (Code Coverage Search) and DFS. CCS
focuses on exploring code areas that have not been tra-
versed yet, making it advantageous for quickly reaching
high coverage. However, because CCS performs rather
aggressive pruning on execution paths, it may produce
unsatisfiable path conditions in certain situations. To
make up for these issues, we also use the DFS strategy
in addition to CCS. DFS is a search strategy that has the
potential to cover code areas not covered by CCS, but it
comes with the drawback of substantial time consump-
tion. Usually, either of these strategies terminates once
every branch it has discovered has been explored. Con-
colic execution may however also be terminated early if
a designated amount of test cases has been generated or
if a timeout has been reached.

Finally, a significant factor influencing the performance
of concolic execution in C++ is the memory model. Sim-

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Table 1
Results on Open-Source Projects

Project Info Coverage Test Time
Name (C/C++) Files Functions Statements Branches Statement Branch [m]

nuklear (C) 39 609 9,284 4,309 93.7% 87.1% 55
libsodium (C) 94 887 8,003 1,651 96.5% 89.7% 6
mathc (C) 1 843 4,192 190 99.9% 100.0% 3
aubio (C) 53 520 5,916 1,797 95.7% 92.4% 14
s2n-tls (C) 175 1,621 16,734 15,512 86.7% 81.3% 68
yaml-cpp (C++) 32 367 3,050 1,300 96.9% 95.5% 11
qnite (C++) 48 637 4,294 1,035 95.2% 89.1% 37
json-voorhees (C++) 21 451 2,507 764 92.5% 88.7% 5
QPULib (C++) 24 278 3,561 1,398 87.8% 83.8% 3
jsoncpp (C++) 3 309 2,802 1,148 91.2% 86.3% 11

Total 490 6,522 60,343 29,104 93.6% 89.4% 213

Table 2
Coverage Results from Hyundai KEFICO

Project Info Coverage Test Time
Name Files Functions Statements Branches Statement Branch

Target A 1,855 5,129 129,131 40,718 92.8% 86.8%

N/ATarget B 83 1,774 11,828 3,078 97.4% 90.7%
Target C 69 375 6,526 2,339 85.5% 79.9%
Total 2,007 7,278 147,485 46,135 92.9% 86.7%

ilar to Mayhem, the approach implemented in Coyote
C++reads values from memory symbolically but writes
values to concrete memory addresses. Utilizing sym-
bolic reads in contrast to reading from concrete addresses
leads to a more faithful representation of path constraints,
thereby enhancing the potential for generating appropri-
ate test cases. For write operations however, we chose
to rely on concrete addresses because symbolic writes
are prone to making the process of solving the path con-
straints overly expensive.

4. Experimental Results
To showcase the performance of Coyote C++, we present
experimental results for a set of diverse open-source
projects as well as several industrial software projects
from one of our customers, Hyundai KEFICO. While our
tool allows user to add test cases and write driver func-
tions for achieving higher coverage, all experimental re-
sults were obtained through one-click automation with-
out any user intervention.

4.1. Experiment on Open-Source Projects
For the first evaluation, we chose to reuse the test set
curated by Shin and Yoo for a survey on white-box au-
tomated testing tools [24], as it contains open-source
projects written in C and C++ from a wide variety of
application domains and was composed specifically for
the evaluation of automated testing tools such as Coy-
ote C++. This survey also concluded that currently no
other commercial tools truly support automated testing
for C++ programs. Among open-source tools for C++,
CITRUS [12] is no longer publicly available, and we were
not able to successfully apply UTBot [14] to the selected
test projects due to its rather limited support for the
C++ syntax. Thus, unfortunately there were no suitable
candidates to compare Coyote C++ against in terms of
coverage and test time.
Table 1 shows the statement1 and branch coverage

results achieved by Coyote C++ on the ten open-source
projects in the test set as well as the time needed for
conducting the automated test generation and execution
for each project. Coyote C++ achieves statement cover-
ages between 86.7% (s2n-tls) and 99.9% (mathc) as well

1As statements we consider only executable lines of code. In
contrast to physical lines of code, this excludes e.g. whitespace,
comments, and type declarations.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

as branch coverages between 81.3% (s2n-tls) and 100%
(mathc). Summing up the number of overall covered
lines/branches and dividing them by the total number
of lines and branches in all ten projects yields a remark-
able combined statement coverage of 92.5% and branch
coverage of 84.9%.

The test times presented in table 1 were attained from
an Intel Core i7-13700 system with 64GB of RAM run-
ning Ubuntu 20.04. Overall, the test of all ten projects
combined only took about three and a half hours, with
individual testing times ranging between three minutes
(mathc) and just above one hour (s2n-tls). That makes it
more than six times faster than the test times reported
in the previously mentioned study [24], which we con-
sider a significant improvement despite possible minor
differences between test setups. Furthermore, with the
exception of the qnite project, the testing speed on all
projects surpasses our definition of practicality, with an
overall testing speed of roughly 17,000 statements per
hour.

4.2. Results on Industry Projects
Table 2 presents testing results produced by Coyote C++
on automotive control software projects from our cus-
tomer Hyundai KEFICO, a member of Hyundai Motors
Group. As details about these projects such as their ac-
tual names are strictly internal information, we will refer
to them as target A, B and C.
The coverage results for these industrial projects are

quite similar to the open-source projects, with an average
statement coverage of 92.9% and an average branch cov-
erage of 86.7%. At our customer, Coyote C++ is employed
not in a controlled test environment but rather in a busi-
ness setting onmultiple machines with varying hardware
specifications. Due to these circumstances and the fact
that a subset of the test results were produced incremen-
tally over a longer period of time, we presently do not
have any meaningful test time measurements available
to report for these projects.
While project C individually yields a slightly subpar

coverage, our notion of practicality in terms of cover-
age achieved (statement coverage >90%, branch coverage
>80%) is upheld both by projects A and B individually
as well as all three projects combined. This again rein-
forces our claim that Coyote C++ is not simply a research
prototype which only works on a limited set of specially
curated programs but is rather a mature tool that can
also handle more challenging industry software. Also, it
should be noted that automated testing with such high
coverage results for these projects is only possible be-
cause Coyote C++ has explicit handling for some common
code patterns in embedded software that would usually
make automated testing difficult or plainly impossible,
such as the usage of fixed memory addresses in code.

5. Conclusion and Future Work
In this paper, we presented Coyote C++, an industry-
grade automated testing tool based on concolic execu-
tion. After describing the general tool architecture, we
discussed the core design decisions for our implementa-
tion of its concolic testing engine. Finally, we evaluated
the performance of Coyote C++ in terms of achieved
coverage and testing time on both a test set of diverse
open-source projects and industry code from one of our
corporate customers. We were able to demonstrate that
Coyote C++ can achieve high statement/branch coverage
of around 90% or higher in a reasonable amount of time
for software projects from a wide variety of application
domains.
While Coyote C++ is already yielding promising re-

sults both on open-source projects and in real industry
applications, it is our plan to continuously improve the
tool both in terms of reliably achieving high coverage
results and broadening its capabilities in the field of au-
tomated testing.

One goal for the near future is target testing for embed-
ded software. Our tool currently performs host testing,
meaning tests are not executed on the hardware that
would run the program under test in a production envi-
ronment, but rather on a separate computer, e.g., a test
engineer’s computer or a test server. Especially in the
embedded domain however, the discrepancy between em-
bedded hardware in the production environment and the
consumer or server hardware in the testing environment
may lead to inaccurate test results. Thus, we are planning
to implement target testing support so that tests may be
run directly on production hardware.
Approaching the goal of increasing automated test

coverage from a different perspective, we also strive to
provide users of our tool with feedback as to how they
should change their code so that Coyote C++ will likely
yield better coverage results for it. While we would like
to give such guidance on the basis of code metrics, our
initial investigations have shown that traditional code
metrics such as cyclomatic complexity have little to no
correlation with automated test coverage. Thus, we see
the need for more thorough research involving the de-
velopment of new code metrics that can serve as a better
estimate for the coverage results produced by automated
testing and Coyote C++ in particular.

References
[1] L. Luo, Software testing techniques, Institute for

software research international Carnegie mellon
university Pittsburgh, PA 15232 (2001) 19.

[2] G. Fraser, A. Arcuri, A large-scale evaluation of au-
tomated unit test generation using EvoSuite, ACM

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Trans. Softw. Eng. Methodol. 24 (2014). URL: https:
//doi.org/10.1145/2685612. doi:10.1145/2685612.

[3] K. Sen, G. Agha, Cute and jcute: Concolic unit
testing and explicit path model-checking tools, in:
T. Ball, R. B. Jones (Eds.), Computer Aided Verifica-
tion, Springer Berlin Heidelberg, Berlin, Heidelberg,
2006, pp. 419–423.

[4] Y. Kim, D. Lee, J. Baek, M. Kim, Concolic testing
for high test coverage and reduced human effort
in automotive industry, in: 2019 IEEE/ACM 41st
International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), IEEE,
2019, pp. 151–160.

[5] K. Sen, D. Marinov, G. Agha, CUTE: A concolic
unit testing engine for C, ACM SIGSOFT Software
Engineering Notes 30 (2005) 263–272.

[6] P. Godefroid, N. Klarlund, K. Sen, DART: Directed
automated random testing, in: Proceedings of
the 2005 ACM SIGPLAN conference on Program-
ming language design and implementation, 2005,
pp. 213–223.

[7] P. Godefroid, M. Y. Levin, D. Molnar, SAGE: white-
box fuzzing for security testing, Communications
of the ACM 55 (2012) 40–44.

[8] F. Saudel, J. Salwan, Triton: A dynamic symbolic ex-
ecution framework, in: Symposium sur la sécurité
des technologies de l’information et des communi-
cations, SSTIC, France, Rennes, 2015, pp. 31–54.

[9] N. Tillmann, J. de Halleux, Pex–white box test
generation for .net, in: B. Beckert, R. Hähnle (Eds.),
Tests and Proofs, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 134–153.

[10] A. Giantsios, N. Papaspyrou, K. Sagonas,
Concolic testing for functional languages, Sci-
ence of Computer Programming 147 (2017)
109–134. URL: https://www.sciencedirect.com/
science/article/pii/S0167642317300837. doi:https:
//doi.org/10.1016/j.scico.2017.04.008.

[11] K. Sen, S. Kalasapur, T. Brutch, S. Gibbs, Jalangi:
A selective record-replay and dynamic analysis
framework for javascript, in: Proceedings of the
2013 9th Joint Meeting on Foundations of Soft-
ware Engineering, ESEC/FSE 2013, Association for
Computing Machinery, New York, NY, USA, 2013,
p. 488–498. URL: https://doi.org/10.1145/2491411.
2491447. doi:10.1145/2491411.2491447.

[12] R. S. Herlim, Y. Kim, M. Kim, CITRUS: Automated
unit testing tool for real-world C++ programs, in:
2022 IEEE Conference on Software Testing, Veri-
fication and Validation (ICST), 2022, pp. 400–410.
doi:10.1109/ICST53961.2022.00046.

[13] J. C. King, A new approach to program testing,
ACM Sigplan Notices 10 (1975) 228–233.

[14] D. Ivanov, A. Babushkin, S. Grigoryev, P. Iatchenii,
V. Kalugin, E. Kichin, E. Kulikov, A. Misonizh-

nik, D. Mordvinov, S. Morozov, et al., UnitTest-
Bot: Automated unit test generation for C code in
integrated development environments, in: 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering: Companion Proceedings (ICSE-
Companion), IEEE, 2023, pp. 380–384.

[15] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu,
I. Finocchi, A survey of symbolic execution tech-
niques, ACM Comput. Surv. 51 (2018). URL: https:
//doi.org/10.1145/3182657. doi:10.1145/3182657.

[16] C. Cadar, D. Dunbar, D. R. Engler, et al., KLEE: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs., in: OSDI,
volume 8, 2008, pp. 209–224.

[17] S. K. Cha, T. Avgerinos, A. Rebert, D. Brum-
ley, Unleashing Mayhem on binary code, in:
IEEE Symposium on Security and Privacy, SP
2012, 21-23 May 2012, San Francisco, California,
USA, IEEE Computer Society, 2012, pp. 380–394.
URL: http://doi.ieeecomputersociety.org/10.1109/
SP.2012.31. doi:10.1109/SP.2012.31.

[18] V. Chipounov, V. Kuznetsov, G. Candea, The S2E
platform: Design, implementation, and applica-
tions, ACM Transactions on Computer Systems
(TOCS) 30 (2012) 1–49.

[19] F. Bellard, QEMU, a fast and portable dynamic
translator., in: USENIX annual technical confer-
ence, FREENIX Track, volume 41, Califor-nia, USA,
2005, p. 46.

[20] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, G. Vigna, SoK: (state of) the art of war:
offensive techniques in binary analysis, in: IEEE
Symposium on Security and Privacy, 2016.

[21] I. Yun, S. Lee, M. Xu, Y. Jang, T. Kim, QSYM: A
practical concolic execution engine tailored for hy-
brid fuzzing, in: 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 745–761.

[22] J. Burnim, K. Sen, Heuristics for scalable dynamic
test generation, in: 2008 23rd IEEE/ACM Inter-
national Conference on Automated Software Engi-
neering, 2008, pp. 443–446. doi:10.1109/ASE.2008.
69.

[23] S. Cha, S. Hong, J. Bak, J. Kim, J. Lee, H. Oh, En-
hancing dynamic symbolic execution by automat-
ically learning search heuristics, IEEE Transac-
tions on Software Engineering 48 (2022) 3640–3663.
doi:10.1109/TSE.2021.3101870.

[24] K. Shin, Y. Ryu, Performance and functionality
evaluation of white-box software testing tools,
part 2, https://csrc.kaist.ac.kr/blog/2023/01/
25/performance-and-functionality-evaluation-
of-white-box-software-testing-tools-part-2/, 2023.
Accessed: 2023-10-11.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

https://doi.org/10.1145/2685612
https://doi.org/10.1145/2685612
http://dx.doi.org/10.1145/2685612
https://www.sciencedirect.com/science/article/pii/S0167642317300837
https://www.sciencedirect.com/science/article/pii/S0167642317300837
http://dx.doi.org/https://doi.org/10.1016/j.scico.2017.04.008
http://dx.doi.org/https://doi.org/10.1016/j.scico.2017.04.008
https://doi.org/10.1145/2491411.2491447
https://doi.org/10.1145/2491411.2491447
http://dx.doi.org/10.1145/2491411.2491447
http://dx.doi.org/10.1109/ICST53961.2022.00046
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
http://dx.doi.org/10.1145/3182657
http://doi.ieeecomputersociety.org/10.1109/SP.2012.31
http://doi.ieeecomputersociety.org/10.1109/SP.2012.31
http://dx.doi.org/10.1109/SP.2012.31
http://dx.doi.org/10.1109/ASE.2008.69
http://dx.doi.org/10.1109/ASE.2008.69
http://dx.doi.org/10.1109/TSE.2021.3101870
https://csrc.kaist.ac.kr/blog/2023/01/25/performance-and-functionality-evaluation-of-white-box-software-testing-tools-part-2/
https://csrc.kaist.ac.kr/blog/2023/01/25/performance-and-functionality-evaluation-of-white-box-software-testing-tools-part-2/
https://csrc.kaist.ac.kr/blog/2023/01/25/performance-and-functionality-evaluation-of-white-box-software-testing-tools-part-2/

Software Defect Prediction based on JavaBERT and
CNN-BiLSTM

Kun Cheng1, Shingo Takada2

1Grad. School of Science and Technology, Keio University Yokohama, Japan
2Grad. School of Science and Technology, Keio University Yokohama, Japan

Abstract
Software defects can lead to severe issues in software systems, such as software errors, security vulnerabilities, and decreased
software performance. Early prediction of software defects can prevent these problems, reduce development costs, and enhance
system reliability. However, existing methods often focus on manually crafted code features and overlook the rich semantic and
contextual information in program code. In this paper, we propose a novel approach that integrates JavaBERT-based embeddings
with a CNN-BiLSTM model for software defect prediction. Our model considers code context and captures code patterns
and dependencies throughout the code, thereby improving prediction performance. We incorporate Optuna to find optimal
hyperparameters. We conducted experiments on the PROMISE dataset, which demonstrated that our approach outperforms
baseline models, particularly in leveraging code semantics to enhance defect prediction performance.

Keywords
Software defect prediction, JavaBERT, CNN, BiLSTM, Optuna,

1. Introduction
Software defects present significant challenges to the relia-
bility and performance of software systems, often leading
to critical issues such as slow software operation, frequent
security vulnerabilities, and software crashes. To address
these challenges, researchers have turned their attention
to software defect prediction (SDP), a key research area
aimed at identifying potentially problematic code early in
the development process.

Software Defect Prediction (SDP) is a structured pro-
cess involving data preprocessing, feature extraction,
model building, and evaluation[1]. Feature extraction
plays a pivotal role in SDP as it determines the model’s
data representation. SDP methods have traditionally relied
on manual feature engineering, a process involving time-
consuming and laborious manual design. However, this
approach faces challenges in capturing complex semantics
and contextual information embedded in software code
as systems become more complex. As a result, there’s a
growing demand for advanced techniques that can effec-
tively exploit the intrinsic semantic and structural meaning
of code, along with its statistical properties.

Recent advances in SDP have shifted towards leverag-
ing structural and semantic features directly from source
code or through parsing into an abstract syntax tree
(AST)[2]. These modern methods employ these features

QuASoQ 2023: 11th International Workshop on Quantitative
Approaches to Software Quality, December 04, 2023, Seoul, South
Korea
$ chengkun@keio.jp (K. Cheng); michigan@ics.keio.ac.jp
(S. Takada)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

in combination with various classification methods, en-
compassing both traditional algorithms and deep learning
techniques.

SDP encompasses two primary domains: Cross-Project
Defect Prediction (CPDP) and Within-Project Defect Pre-
diction (WPDP). CPDP involves training a model on one
project and applying it to another, addressing the chal-
lenge of generalization across different software environ-
ments. In contrast, WPDP focuses on building models
within the same project, enhancing defect prediction per-
formance by considering unique project characteristics
and evolution patterns. For the purpose of this study, our
primary focus lies on WPDP, aiming to improve defect
prediction performance within a single project.

In this paper, we introduce an innovative approach to
SDP that combines Java Bidirectional Encoder Represen-
tations of Transformers (JavaBERT) and Convolutional
Neural Networks with Bidirectional Long Short-Term
Memory (CNN-BiLSTM). By harnessing JavaBERT’s
contextual understanding of text data and CNN-BiLSTM’s
capacity to capture structural features, we improve defect
prediction performance. Furthermore, we optimize the
model’s hyperparameters by introducing Optuna, further
refining our predictive model.

The remainder of this paper is organized as follows:
Section 2 discusses related work. Section 3 presents the
design of our proposed approach. Section 4 covers the
implementation details based on the design, and Section
5 offers the evaluation results along with a discussion of
potential threats to validity. Finally, Section 6 concludes
the paper and discusses future work.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

mailto:chengkun@keio.jp
mailto:michigan@ics.keio.ac.jp
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Related Work
Researchers have explored various models for feature ex-
traction in software defect prediction, from traditional ma-
chine learning to deep learning. Initially, Support Vector
Machines (SVM), as employed by Elish et al.[3], gained
prominence for identifying defective modules using static
code metrics. However, it struggled to uncover deep se-
mantics within the source code. Deep Belief Networks
(DBN), introduced by Wang et al.[4], aimed to extract
more complex features from code through unsupervised
learning. Yet, its limited depth posed challenges in reveal-
ing intricate relationships within the source code. Con-
volutional Neural Networks (CNNs) were used by Li et
al.[5] to predict software defects by analyzing structural
correlations between code tokens. While proficient in
capturing local patterns, CNNs faced challenges in captur-
ing longer-range connections. Wang et al.[6] introduced
an RNN (Recurrent Neural Network)-based model for
predicting software reliability. Deng et al.[7] and Liang
et al.[8] expanded Long Short-Term Memory (LSTM)
models in software defect prediction, capturing temporal
patterns in code sequences. However, a single LSTM can
only capture one direction temporal pattern in the code
sequence. Bidirectional LSTM (BiLSTM) models with
attention mechanisms emerged. Wang et al.[9] introduced
a gated hierarchical BiLSTM model. Uddin et al.[10]
combined BiLSTM with attention and BERT-based em-
beddings.

In short, SVM has difficulty discovering the deep se-
mantics of the source code, DBN has limited depth so it
is difficult to understand the complex relationships in the
source code, CNN has difficulty capturing long-distance
correlations, and RNN and LSTM can only capture a sin-
gle temporal pattern. BiLSTM may have challenges in
capturing local patterns.

To solve these problems, we combine the advantages
of CNN in detecting local patterns with the advantages
of BiLSTM in processing sequences, allowing for com-
prehensive code inspection. We further incorporate Jav-
aBERT to dynamically adjust token embeddings based
on the entire input sequence, thereby deepening the rep-
resentation and capturing interdependencies among code
tokens.

3. Proposed Methodology
Our software defect prediction method consists of several
key steps, all aimed at improving prediction performance.
As shown in Figure 1, we first use JavaBERT to convert
the code into vector representations. Next, we employ
the CNN-BiLSTM model for feature extraction, focusing
on local patterns and context. We also incorporate sta-
tistical features to fully utilize all available information.

Optuna automatically executes the above combination of
JavaBERT and CNN-BiLSTM multiple times, and outputs
the best hyperparameter values through these executions.
Then we retrain the model in another version of the code
based on the obtained hyperparameters and test the model
performance.

3.1. Embedding with JavaBERT
BERT (Bidirectional Encoder Representations from
Transformers)[11] is a language model widely employed
in natural language processing (NLP) tasks. Unlike con-
ventional embeddings, BERT excels at capturing intri-
cate contextual associations. Traditional methods like
Word2Vec[12] and GloVe[13] generate static contextual
representations, whereas BERT, utilizing multi-layer bidi-
rectional transformers, enables tokens to gather informa-
tion from both preceding and succeeding tokens.

In our approach, we leverage a pretrained BERT model,
JavaBERT[14], fine-tuned for Java code. JavaBERT has
been trained on a dataset of 2,998,345 Java files from
GitHub open source projects. JavaBERT’s transformer ar-
chitecture dynamically adapts token embeddings based on
the entire input sequence, enhancing representation depth
and capturing code token interdependencies. The Jav-
aBERT embeddings, denoted as 𝐸JavaBERT, are computed
by applying the model’s encoder to tokenized Java code.
For a sequence of code tokens 𝐶 = {𝑐1, 𝑐2, . . . , 𝑐𝑛},
JavaBERT embeddings are computed as:

𝐸JavaBERT = EncoderJavaBERT(𝑐1, 𝑐2, . . . , 𝑐𝑛)

Models typically cannot process code text sequences
directly. Through JavaBERT, we embed code text into a
continuous vector space, using these vectors as inputs to
the model, making it easier for the model to compute and
understand the code.

3.2. Feature Extraction using
CNN-BiLSTM

We combine Convolutional Neural Networks (CNN) and
Bidirectional Long Short-Term Memory networks (BiL-
STM) to extract features. This is the key part of our
approach, where after extracting features with CNN, it is
refined with the sequential capabilities of BiLSTM.

3.2.1. Feature Extraction with CNN

Utilizing Convolutional Neural Networks (CNN)[15] for
feature extraction involves sliding a small window, known
as a filter, over various parts of the code. This filter exam-
ines a small segment of the code at a time, calculating a
value at each sliding position to create a "feature map."

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Figure 1: Overview of Methodology

The positions in the code correspond to positions in the
feature map. The observed code segment within the fil-
ter’s scope is termed the "input sequence slice." As the
filter traverses the entire code, it analyzes these input se-
quence slices, effectively capturing distinct features that
characterize the code’s structural and syntactical elements.

The process of feature extraction using CNN is mathe-
matically expressed as:

𝑦[𝑖, 𝑗] = 𝜎

(︃∑︁
𝑚

∑︁
𝑛

𝑥[𝑖+𝑚, 𝑗 + 𝑛] · 𝑤[𝑚,𝑛] + 𝑏

)︃

where 𝑥[𝑖, 𝑗] is the input at position (𝑖, 𝑗), 𝑤[𝑚,𝑛] rep-
resents the kernel at position (𝑚,𝑛), 𝑏 is the bias, and 𝜎
signifies the activation function.

3.2.2. Refinement of Features with BiLSTM

The Bidirectional Long Short-Term Memory
(BiLSTM)[16] layer enhances the features extracted by
the Convolutional Neural Networks (CNN). What sets
BiLSTM apart is its capability to capture both short-term
and long-term dependencies within the code, which
perfectly complements the local feature extraction carried
out by CNN.

The forward and backward computations in BiLSTM
can be unified into a single mathematical representation:

ℎ𝑡 = BiLSTM(𝑥𝑡, ℎ𝑡−1, ℎ𝑡+1)

In this equation, ℎ𝑡 represents the hidden state at time
step 𝑡 in the Bidirectional Long Short-Term Memory (BiL-
STM) model. It is computed based on the input 𝑥𝑡 at the
current time step, the previous hidden state ℎ𝑡−1, and

the next time step 𝑡 + 1’s hidden state ℎ𝑡+1. The BiL-
STM model effectively captures sequential patterns and
dependencies in data by considering information from
both directions. It analyzes the sequence of tokens, cap-
turing dependencies extending both backward and for-
ward within the code. This dynamic construction of code
features considers token order, revealing evolving pat-
terns and connections over time, amplifying the feature
representation. In summary, we refine the feature maps
obtained from CNN using BiLSTM to achieve a com-
prehensive code representation. This fusion of capturing
local patterns and accounting for temporal dependencies
improves software defect prediction performance.

3.3. Integration with Statistical Features
Our methodology integrates the refined BiLSTM outputs
with statistical features (such as shown in Table 2) ex-
tracted from dataset. This step concatenates the vectors
obtained from the BiLSTM and the vectors of statisti-
cal features obtained from the dataset into longer vectors,
making full use of the description information of the code.

3.4. Hyperparameter Optimization by
Optuna

Optuna, a powerful hyperparameter optimization frame-
work developed by Akiba et al.[17], plays a vital role in
our approach by automating hyperparameter tuning for the
CNN-BiLSTM model. There are similar frameworks such
as Ray Tune, etc., but Optuna is more lightweight and
easier to use. It employs the Tree-structured Parzen Esti-
mator (TPE) algorithm to efficiently explore and exploit
the hyperparameter space, enhancing the performance of
our Software Defect Prediction task.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

In this section, we will discuss a crucial step in our
methodology: determining optimal hyperparameters by
leveraging shared features among different versions of the
same project. Usually, code with similar version numbers
exhibits a high degree of similarity. By harnessing these
inherent similarities, we attempt to find hyperparameters
that can generalize across various versions, ultimately
enhancing model performance.

Using the Ant project as an example, our aim is to
demonstrate the transferability of hyperparameters ob-
tained from training on one version (e.g., 1.5) to another
(e.g., 1.6). This transferability is valid as both versions
originate from the same project, sharing similar code struc-
tures and functionalities. This enables the hyperparame-
ters obtained from one version to serve as a foundation for
other versions within the same project, thereby solidifying
our model configuration.

We start by selecting version pairs, using the Ant
project as an illustration. Here, we designate version
1.5 for training and version 1.6 for testing. Next, we de-
fine the performance metric to optimize, such as the F1
score. Subsequently, Optuna conducts multiple experi-
ments, traversing various hyperparameter combinations
and evaluating their performance on the designated test-
ing dataset. Through these iterative experimentation and
evaluation stages, Optuna determines the hyperparameter
set that maximizes the chosen performance metric.

This process can be represented as:

𝐻𝑥 = Optuna 𝑓(Ant 1.5,Ant 1.6)

Here, 𝑓(Ant 1.5,Ant 1.6) embodies the objective func-
tion maximized during the hyperparameter optimization
process, with Ant 1.5 as the training dataset and Ant 1.6
as the testing dataset. After obtaining optimal hyperpa-
rameters 𝐻𝑥 through the Optuna process, we seamlessly
transfer them across different project versions. 𝐻𝑥 is
applied to reconfigure the training and testing sets. For
instance, in the Ant project, 𝐻𝑥 is then used on different
version pairs, such as training on Ant 1.6 with 𝐻𝑥 and
testing on Ant 1.7.

This operation optimizes hyperparameters across ver-
sion pairs, contributing to enhanced model adaptability
and performance in varying project iterations.

4. Experimental Setup

4.1. Research Questions
Our experiment addresses the following research ques-
tions (RQ) :

RQ1: How does the performance of our CNN-BiLSTM
model compare against baseline models?

Table 1
Selected Projects in the PROMISE Java Dataset

Project Versions (Buggy Rate)

Ant 1.5, 1.6, 1.7 (0.109, 0.263, 0.224)
Camel 1.2, 1.4, 1.6 (0.36, 0.171, 0.201)
JEdit 3.2, 4.0, 4.1 (0.346, 0.256, 0.263)
Lucene 2.0, 2.2, 2.4 (0.489, 0.611, 0.615)
Poi 2.0, 2.5, 3.0 (0.120, 0.654, 0.641)
Synapse 1.0, 1.1, 1.2 (0.102, 0.270, 0.336)
Xalan 2.4, 2.5, 2.6 (0.163, 0.509, 0.468)

RQ2: How does the performance of the proposed model
vary across different software projects and within the dif-
ferent versions of each project in the PROMISE dataset?

RQ3: How do different hyperparameter settings impact
the performance of the combined CNN-BiLSTM model
in code defect prediction?

4.2. Dataset and Data Preprocessing
Our study uses the PROMISE[18] dataset, exclusively
comprised of Java projects. This dataset spans various
domains and project scales, providing project details like
name, description, version, and bug rate. Table 1 shows an
overview of the projects we use that are in the PROMISE
Java Dataset. Since Optuna’s process of finding hyperpa-
rameters takes a lot of time, we only selected a part of the
projects in the PROMISE data set. Statistical features also
play a vital role in code analysis, offering insights into
code composition and behavior. To enhance our study, we
carefully selected a subset of these features, as shown in
Table 2.

To prepare the data for analysis, we conducted thor-
ough data preprocessing. Using the "javalang"[19] Python
library, we removed redundant code elements such as
comments, white spaces, and unnecessary details. This
process allowed us to extract essential token sequences,
capturing the code’s semantics. To address class imbal-
ance in software defect prediction, we implemented ran-
dom oversampling exclusively on the "Bug" class files.
This deliberate strategy generated synthetic data instances,
improving class distribution and mitigating potential bias
towards the majority class.

4.3. Experimental Settings
For each project listed in Table 1, we selected the smallest
two version numbers to serve as versions Y and Y+1
for Optuna’s hyperparameter optimization process. The
search space for the hyperparameters was specified as
shown in Table 3. The number of trials for each project
was set to 30. After completing these experiments, each
project will produce a different set of hyperparameters

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Table 2
Selected Statistical Features

Measure of Functional Abstraction (MFA)
Coupling Between Methods (CBM)
Data Access Metric (DAM)
Coupling Between Object classCA (CBO)
Lines Of Code (LOC)
Afferent Couplings (CA)
Number Of Children (NOC)
Lack of COhesion in Methods (LCOM)
Average Method Complexity (AMC)
Inheritance Coupling (IC)
Response For a Class (RFC)
Efferent Couplings (CE)
Measure Of Aggregation (MOA)
Weighted Methods per Class (WMC)
Depth of Inheritance Tree (DIT)
Lack of COhesion in Methods (LCOM3)
Cohesion Among Methods of class (CAM)
Number of Public Methods (NPM)

that allow the model to output the highest F1 score, and a
model trained on these parameters using version Y. These
hyperparameters were then applied to train new models
on version Y+1 for each project. Then the model trained
on version Y and the model trained on version Y+1 were
evaluated against the code of version Y+2. We conducted
each evaluation test three times and calculated the mean
to obtain the experimental result.

Table 3
Search Space for Hyperparameters

Hyperparameter Search Range

Number of Epochs 3 to 10
Batch Size [16, 32, 64, 128]
Learning Rate 1 × 10−5 to 1 × 10−2 (Log-

uniform)
Filter Sizes [3, 5, 7, 9, 11]
Number of Filters 32 to 512
Hidden Units [16, 32, 64, 128, 256, 512,

1024]

4.4. Baseline Models
We compare our proposed approach against the following
baseline models:

• Support Vector Machine (SVM): SVM, a classic
and widely adopted machine learning algorithm,
excels in both linear and non-linear classification
tasks and is known for its effectiveness in handling
high-dimensional data.

• Convolutional Neural Network (CNN): CNNs ex-
cel at extracting hierarchical features from struc-
tured data, making them suitable for capturing
local patterns in software defect prediction.

• Bidirectional Long Short-Term Memory (BiL-
STM): BiLSTM enhances LSTM by considering
bidirectional information flow, enabling it to cap-
ture both past and future contexts.

In assessing the predictive performance, this paper uti-
lizes three widely accepted metrics: precision, recall, and
the F1-score.

5. Results and Discussion
In this section, we present the results of our study and dis-
cuss their implications, addressing the research questions
(RQ) that guide our investigation.

5.1. Impact of JavaBERT-based
Embeddings with CNN-BiLSTM
Model

To address RQ1, we assessed the performance of our
model in comparison to baseline models. Table 4 presents
a detailed performance comparison between our CNN-
BiLSTM model and the baseline models concerning pre-
cision, recall, and F1-score. For instance, "ant_1.5_1.6"
represents the experimental results obtained by using ver-
sion 1.5 of Ant as the training dataset and version 1.6
as the test dataset. The results demonstrate a consistent
outperformance of our model across all metrics. Figure
2 complements the table by providing a visual represen-
tation of the F1 scores, where the x-axis represents pairs
of software versions used for training and testing (e.g.,
ant_1.5_1.6), and the y-axis represents the corresponding
F1 values obtained during testing. This figure shows that
the F1 of our model is higher than the base model most of
the time.

5.2. Model Performance Variability
Across PROMISE Projects and
Versions

To address RQ2, Figure 3 presents the F1 scores of our
model across different projects and their respective ver-
sions in the PROMISE dataset. In this figure, the x-axis
represents pairs of software versions used for training and
testing (e.g., ant_1.5_1.6), while the y-axis represents the
corresponding F1 values obtained during testing. When
we examined the model’s performance across different
projects and its various versions, we observed certain
noteworthy patterns. Specifically, within the same project,

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Table 4
Comparison of Experimental Results with Baseline Models

project SVM CNN BiLSTM CNN-BiLSTM
P R F1 P R F1 P R F1 P R F1

ant_1.5_1.6 0.5133 0.6304 0.5659 0.5526 0.4565 0.5000 0.5120 0.6957 0.5899 0.6364 0.6848 0.6597
ant_1.6_1.7 0.5849 0.5602 0.5723 0.5230 0.5482 0.5353 0.2486 0.5241 0.3372 0.5868 0.5904 0.5886
ant_1.5_1.7 0.4297 0.6807 0.5268 0.3653 0.7349 0.4880 0.4194 0.7048 0.5258 0.5531 0.5964 0.5739
camel_1.2_1.4 0.3645 0.5103 0.4253 0.5625 0.4966 0.5275 0.3186 0.4966 0.3881 0.4647 0.7724 0.5803
camel_1.4_1.6 0.2687 0.0957 0.1412 0.5392 0.2926 0.3793 0.2908 0.3883 0.3326 0.4957 0.3032 0.3762
camel_1.2_1.6 0.5000 0.1915 0.2769 0.3571 0.1862 0.2448 0.2908 0.3883 0.3326 0.3976 0.5266 0.4531
jedit_3.2_4.0 0.4333 0.1733 0.2476 0.4715 0.7733 0.5859 0.5208 0.6667 0.5848 0.4741 0.8533 0.6095
jedit_4.0_4.1 0.3835 0.7727 0.5126 0.5889 0.6709 0.6272 0.5517 0.7273 0.6275 0.7838 0.3671 0.5000
jedit_3.2_4.1 0.4783 0.1667 0.2472 0.5039 0.8101 0.6214 0.5455 0.7273 0.6234 0.4803 0.7722 0.5922
lucene_2.0_2.2 0.7681 0.4454 0.5638 0.6918 0.7692 0.7285 0.7571 0.4454 0.5608 0.6371 0.9875 0.7745
lucene_2.2_2.4 0.6923 0.7310 0.7111 0.6329 0.6650 0.6485 0.7739 0.4518 0.5705 0.6204 0.9806 0.7600
lucene_2.0_2.4 0.6120 0.9848 0.7549 0.6339 0.7208 0.6746 0.7768 0.4416 0.5631 0.6204 0.9806 0.7600
poi_2.0_2.5 0.6996 0.6573 0.6778 0.6781 0.3992 0.5025 0.8053 0.7339 0.7679 0.7240 0.9839 0.8342
poi_2.5_3.0 0.8560 0.7429 0.7954 0.7038 0.7214 0.7125 0.8547 0.7143 0.7782 0.6943 0.9571 0.8048
poi_2.0_3.0 0.7436 0.7250 0.7342 0.7333 0.5893 0.6535 0.8559 0.7214 0.7829 0.7034 0.9571 0.8109
synapse_1.0_1.1 0.4815 0.2281 0.3095 0.5946 0.3860 0.4681 0.5000 0.3158 0.3871 0.5077 0.5789 0.5410
synapse_1.1_1.2 0.5152 0.3953 0.4474 0.5417 0.4535 0.4937 0.5439 0.3605 0.4336 0.5190 0.4767 0.4970
synapse_1.0_1.2 0.5455 0.2791 0.3692 0.5634 0.4651 0.5096 0.5273 0.3372 0.4113 0.4483 0.4535 0.4509
xalan_2.4_2.5 0.6609 0.4258 0.5179 0.5922 0.4059 0.4817 0.5721 0.3221 0.4122 0.5957 0.7176 0.6510
xalan_2.5_2.6 0.6494 0.5221 0.5788 0.6274 0.6397 0.6335 0.5344 0.3431 0.4179 0.5804 0.8848 0.7010
xalan_2.4_2.6 0.6333 0.5123 0.5664 0.6506 0.2647 0.3763 0.5344 0.3431 0.4179 0.5983 0.8431 0.6999

Average 0.5626 0.4967 0.5020 0.5766 0.5452 0.5425 0.5588 0.5166 0.5164 0.5772 0.7270 0.6295

Figure 2: F1 Score Comparison Visualization

such as Lucene, POI, and Xalan, our models show a high
degree of performance consistency across different ver-
sions. This shows that our model is able to predict re-
sults consistently when dealing with different versions
of certain projects. This consistency can be partially at-
tributed to the higher code similarity found between ver-
sions within the same project, making it easier for models
to capture shared features and patterns.

There are some differences between versions of Ant
and Synapse, these differences are relatively minor. In
contrast, projects such as Camel and JEdit show more per-
formance fluctuations, even within the same project. This

suggests that the predictive performance of our model
tends to vary when applied to certain projects. Although
we cannot pinpoint the exact reasons behind these changes
at this time, we speculate that they may have been influ-
enced by a variety of factors, including project-specific
characteristics, code complexity, and domain-related dif-
ferences.

Figure 3: F1 Score Across PROMISE Projects

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Table 5
Hyperparameter combinations obtained through Optuna

proj Optuna Time num_epochs batch_size learning_rate filter_size num_filters rnn_hidden
ant_1.5_1.6 8.18h 8 64 0.000185 3 186 256
camel_1.2_1.4 30.92h 7 32 0.000148 7 120 1024
jedit_3.2_4.0 4.32h 6 32 0.000251 11 157 64
lucene_2.0_2.2 1.21h 3 128 0.008864 9 178 128
poi_2.0_2.5 3.93h 6 128 0.000015 3 240 256
synapse_1.0_1.1 3.09h 7 64 0.000458 5 346 64
xalan_2.4_2.5 35.23h 5 128 0.000232 5 194 16

5.3. The impact of hyperparameters on
the performance of CNN-BiLSTM
model

To address RQ3, in this section, we study the impact of hy-
perparameters on the performance of the CNN-BiLSTM
model for code defect prediction. Initially, we set the
hyperparameters to the following values: the number of
epochs is 10, the batch size is 64, the learning rate is 1e-4,
the number of CNN filters is 128, the number of BiLSTM
hidden units is 256, and the CNN filter size is 5 . After
that, we fixed other hyperparameters, and then gradually
manually adjust one of the other parameters, the CNN
filter or the number of BiLSTM hidden units, to observe
changes in model performance.

Figure 4 and Figure 5 show our experimental results,
the x-axis is the change in the number of CNN filters
and BiLSTM hidden units, and the y-axis shows the F1
score. We can see that the model performance fluctuates
greatly when a single parameter changes. For example,
the smaller the number of CNN filters, the better the per-
formance of the model. In Figure 5, the F1 score drops
after BiLSTM hidden unit is 16, but performs better and
tends to be stable after 256. Exploring the impact of each
hyperparameter individually would be a time-consuming
task, and it is difficult to predict how the model will be-
have when these hyperparameters are combined. So we
used Optuna, which will constantly try to search for hyper-
parameters that can make the model perform better based
on the search algorithm.

Figures 6 and 7 show the F1 score (y-axis) for a certain
number of trials (x-axis). Specifically, Figure 6 is a scatter
plot, representing the F1 score that was obtained in each
trial, e.g., when the trial number is 5, the F1 score is the
value for the fifth trial. Figure 7 represents the best model
performance that can be achieved based on the search
until the current trial model is executed. So, in figure
7, when the trial number is 5, the F1 score is the best
F1 score from the first to the fifth trial. We can observe
that through continuous repetition and search, Optuna can
gradually search for better results. The entire process is
automated, which greatly simplifies our hyperparameter
tuning process.

Table 5 provides a summary of hyperparameter com-
binations obtained through Optuna. These combinations
have been identified to bring better performance for our
code defect prediction model.

Figure 4: Effect of CNN Filter Length on F1 Score

Figure 5: Effect of BiLSTM Hidden Units on F1 Score

5.4. Threats to Validity
In our research, we have identified and addressed several
potential threats to the validity of our findings.

The implementation of our Python experimental code
for processing source code text and building models poses
a potential threat due to the possibility of bugs. To mitigate
this, we took measures by leveraging mature third-party

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Figure 6: Scatter Plot of F1 Scores Across Optuna Trials

Figure 7: Progressive Improvement of Best Model Perfor-
mance

libraries (such as javalang and PyTorch) and conducting
thorough code inspections. Additionally, we applied ran-
dom oversampling during data preprocessing, which could
introduce bias. Future work will explore alternative meth-
ods to handle class imbalance and assess their impact on
results. Moreover, the use of Optuna for hyperparameter
optimization introduces potential variability in results due
to different search spaces and numbers of trials. To reduce
these threats, we plan to conduct more extensive searches
and explore larger search spaces.

Our choice of a subset of projects from the PROMISE
dataset due to time constraints may impact the generaliz-
ability of our findings, as the results may not generalize
well to other projects. To address this, we intend to include
a broader range of projects in future research.

We evaluated our models using a limited set of per-
formance metrics, specifically precision, recall, and F1
measure. To reduce these threats, we will consider in-
corporating additional metrics such as AUC-ROC and
MCC, among others, to provide a more comprehensive
assessment of model performance.

6. Conclusion and Future Work
In this research, we have introduced a novel approach
that leverages JavaBERT-based embeddings with a CNN-
BiLSTM model for software defect prediction. Our ap-
proach harnesses semantic and contextual information in
program code to enhance prediction accuracy. Through
comprehensive experiments on the PROMISE dataset,
we have demonstrated the superiority of our model over
baseline models based on precision, recall, and F1-score
metrics.

Although our study improves the performance of soft-
ware defect prediction compared to baseline models, we
still have many future works to do. In addition to what we
discussed in the "threats to validity" session, we can also
train the BERT model in different languages to adapt our
methods to different programming languages.

References
[1] S. Omri, C. Sinz, Deep learning for software de-

fect prediction: A survey, in: Proceedings of the
IEEE/ACM 42nd international conference on soft-
ware engineering workshops, 2020, pp. 209–214.

[2] F. Meng, R. Huang, J. Wang, A survey of soft-
ware defects research based on deep learning, in:
2023 6th International Conference on Information
Systems and Computer Networks (ISCON), IEEE,
2023, pp. 1–5.

[3] K. O. Elish, M. O. Elish, Predicting defect-prone
software modules using support vector machines,
Journal of Systems and Software 81 (2008) 649–
660.

[4] S. Wang, T. Liu, L. Tan, Automatically learning
semantic features for defect prediction, in: Pro-
ceedings of the 38th International Conference on
Software Engineering, 2016, pp. 297–308.

[5] J. Li, P. He, J. Zhu, M. R. Lyu, Software defect pre-
diction via convolutional neural network, in: 2017
IEEE international conference on software quality,
reliability and security (QRS), IEEE, 2017, pp. 318–
328.

[6] J. Wang, C. Zhang, Software reliability prediction
using a deep learning model based on the RNN
encoder–decoder, Reliability Engineering & System
Safety 170 (2018) 73–82.

[7] J. Deng, L. Lu, S. Qiu, Software defect prediction
via LSTM, IET software 14 (2020) 443–450.

[8] H. Liang, Y. Yu, L. Jiang, Z. Xie, Seml: A semantic
LSTM model for software defect prediction, IEEE
Access 7 (2019) 83812–83824.

[9] H. Wang, W. Zhuang, X. Zhang, Software defect pre-
diction based on gated hierarchical LSTMs, IEEE
Transactions on Reliability 70 (2021) 711–727.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

[10] M. N. Uddin, B. Li, Z. Ali, P. Kefalas, I. Khan,
I. Zada, Software defect prediction employing BiL-
STM and BERT-based semantic feature, Soft Com-
puting 26 (2022) 7877–7891.

[11] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova,
BERT: Pre-training of deep bidirectional transform-
ers for language understanding, arXiv preprint
arXiv:1810.04805 (2018).

[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
J. Dean, Distributed representations of words and
phrases and their compositionality, Advances in
neural information processing systems 26 (2013).

[13] J. Pennington, R. Socher, C. D. Manning, Glove:
Global vectors for word representation, in: Proceed-
ings of the 2014 conference on empirical methods
in natural language processing (EMNLP), 2014, pp.
1532–1543.

[14] N. T. De Sousa, W. Hasselbring, JavaBERT: Train-
ing a transformer-based model for the Java program-
ming language, in: 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing Workshops (ASEW), IEEE, 2021, pp. 90–95.

[15] K. Fukushima, Neocognitron: A self-organizing
neural network model for a mechanism of pattern
recognition unaffected by shift in position, Biologi-
cal cybernetics 36 (1980) 193–202.

[16] M. Schuster, K. K. Paliwal, Bidirectional recur-
rent neural networks, IEEE transactions on Signal
Processing 45 (1997) 2673–2681.

[17] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama,
Optuna: A next-generation hyperparameter opti-
mization framework, in: Proceedings of the 25th
ACM SIGKDD international conference on knowl-
edge discovery & data mining, 2019, pp. 2623–
2631.

[18] J. Sayyad Shirabad, T. Menzies, The PROMISE
Repository of Software Engineering Databases.,
School of Information Technology and Engineer-
ing, University of Ottawa, Canada, 2005. URL:
http://promise.site.uottawa.ca/SERepository.

[19] C. Thunes, javalang: pure Python Java parser and
tools, 2020.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

http://promise.site.uottawa.ca/SERepository

Proposals for Improving the Assessment of
Medical Device Software in Thailand

Natsuda Kasisopha1, Songsakdi Rongviriyapanich 1, and Panita Meananeatra 2

1 Thammasat University, 99 Phahonyothin Road, Khlong Nueng, Khlong Luang District, Pathum Thani 12120, Thailand
2 National Electronics and Computer Technology Center (NECTEC), 112 Phahonyothin Road, Khlong Nueng, Khlong Lu-
ang District, Pathumthani 12120, Thailand

Abstract

The registration of Medical Device Software (MDS) and Software as a Medical Device (SaMD) with the
Food and Drug Administration (FDA) is a prerequisite before entering the market. The FDA relies on
several international standards as regulatory benchmarks to ensure the quality of MDS. Key components
of this regulatory framework include IEC 62340 [1], ISO 14971 [2], and ISO 13485 [3]. Our experience
assessing MDS in Thailand highlighted common challenges manufacturers face during software evalua-
tion. Notably, clause 6 (Software Maintenance Process) and clause 8 (Software Configuration Manage-
ment Process) demonstrate the highest rates of evaluation failure. Clause 7 (Software Risk Management
Process) and clause 9 (Software Problem Resolution Process) closely follow, ranking as the second-
highest areas of concern regarding evaluation failures. The primary factor contributing to these soft-
ware evaluation challenges is a deficiency in knowledge and understanding of IEC 62304 [1]. To address
this issue, we propose a solution in the form of a chatbot designed to assist manufacturers in compre-
hending and generating IEC 62304-compliant documents.

Keywords
medical device software, software as a medical device, Thais’ medical device software assessor, medi-
cal device software obstacle, medical device software quality assessment.01

1. Introduction
In Thailand, Medical Device Software (MDS) and Soft-
ware as a Medical Device (SaMD) are required to regis-
ter with the Thailand Food and Drug Administration
(Thai FDA) [4]. The Thai FDA has established criteria
aligned with international standards, including mainly
ISO/IEC 62304:2006 - "Medical device software - Soft-
ware life cycle processes" (IEC 62304) [1], ISO
14971:2019 - "Medical devices - Application of risk
management to medical devices" (ISO 14971) [3], ISO
13485:2016 - "Medical devices - Quality management
systems - Requirements for regulatory purposes" (ISO
13485) [3], and IEC 60601-1 clause 14 (IEC 60601),
which pertains to Programmable Electrical Medical
Systems (PEMS) for medical electrical devices
[5].These standards outline the processes, activities,
and configuration tasks that form a holistic framework
for developing MDS.

IEC 62304 [1] encompasses six processes outlined
in clauses 4 to 9. Each clause specifies a breakdown
into sub-clauses, activities, and tasks. These sub-
clauses are interconnected with other clauses and sub-

QuASoQ 2023: 11th International Workshop on Quantitative
Approaches to Software Quality, December 04, 2023, Seoul, South
Korea

 natsuda.kas@dome.tu.ac.th N. Kasisopha); rongviri@tu.ac.th (S.
Rongviriyapanich); panita.meananeatra@nectec.or.th (P. Meananeatra)

© 2023 Copyright for this paper by its authors. The use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR Workshop Proceedings (CEUR-WS.org)

clauses within the standard. For instance, sub-clause
4.2 (Risk Management) illustrates its correlation with
clause 7 (Software Risk Management Process). Sub-
clause 4.2 of IEC 62304 is also interconnected with ad-
ditional standards, such as ISO 14971 [2]. Further-
more, for manufacturers attaining ISO 13485 [3], ad-
herence to ISO 14971 [2] for risk management is im-
plicitly fulfilled. The visual representation of these in-
terrelations between standards is depicted in Figure 2.

Moreover, IEC 62304 [1] establishes connections
with IEC 60601 [5], clause 14, primarily through
clauses 4.3 (Software Safety Classification), 5 (Soft-
ware Development Process), 7 (Software Risk Manage-
ment Process), 8 (Software Configuration Process),
and 9 (Software Problem Resolution Process). The
standard comprehensively addresses aspects of Soft-
ware Life Cycle Processes, encompassing Quality Man-
agement Systems (QMS), Software Development Pro-
cesses (SDP), Software Requirement Specification
(SRS), Software Maintenance Process (SMP), Software
Risk Management (SRM), Software Configuration Man-
agement (SCM), Software System Testing (ST), and re-
lated components, as well as the Software Problem
Resolution Process (SPR). These elements are essen-
tial for the assessment of MDS.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Figure 1: Interrelation between sub-clauses within
IEC 62304.

Figure 2: MDS Life Cycle [1].

All MDS must undergo testing in adherence to these
standards, following the stipulations of the Thai FDA
[6] requirements. The procedure for registering MDS
with the Thai FDA is detailed in Section 1.1 of the Reg-
ulatory Framework for Medical Device Software in
Thailand. Additionally, section 1.2 describes the MDS
Software Quality Assurance and Assessment ecosys-
tem, providing a comprehensive overview of the pro-
cesses and standards involved in ensuring the quality,
safety, and regulatory compliance of MDS in the Thai
context.

1.1. Regulatory Framework for Medi-
cal Device Software in Thailand

The oversight of MDS falls under the scope of the Med-
ical Device Control Division (MDCD) of the Thai FDA
[6]. Thai FDA [6] relies on the Health and Science Au-
thority (HSA) of Singapore [7]. The Thai FDA [6] man-
dates a two-step process for registering MDS and other
medical devices. In the first step, known as
"Establishment Licensing," the medical device manu-
facturers must provide business registration docu-
ments, complete request forms, and submit other rele-
vant government documents. This step aims to verify
the manufacturer credentials, enabling oversight of
the quality of medical devices by restricting importa-
tion locations for production and storage. The second

step, "Product Registration," necessitates manufactur-
ers to submit comprehensive documentation about the
medical device. This includes details such as the device
description, intended use, indications, instructions for
use, storage conditions, shelf life, contraindications,
warnings, precautions, potential adverse effects, alter-
native therapy options, materials used, product speci-
fications, and the production development flow chart.
The submission must align with the essential princi-
ples of safety and performance of the medical device as
stipulated by the ASEAN Medical Device Directive, EU
regulations, Singapore standards, and other applicable
guidelines.

Moreover, the submission should summarize veri-
fication and validation, incorporating pre-clinical stud-
ies, clinical evidence, test reports, clinical evaluation
reports, and clinical data. Additionally, the marketing
history and safety declaration template documenta-
tion must be included. The inclusion of risk manage-
ment processes that comply with ISO 14971, such as
the risk plan, risk control measures, and the risk re-
port, is imperative. A valid certificate of compliance
with ISO 13485 or GMP for medical devices and ISO
9001 should be part of the submission. Lastly, the
package should also contain a declaration of conform-
ity and a letter of authorization.

Manufacturers must submit documentation to the
Thai FDA's E-Submission system to adhere to the prod-
uct registration process. The submitted documents
will be meticulously examined and evaluated in align-
ment with the risk classification of the medical device
to verify compliance with regulatory standards. In the
event of uncertainties or the need for additional infor-
mation, the Thai FDA communicates with the manufac-
turer. This interaction serves the purpose of seeking
clarification and ensuring that all requisite details are
accurately furnished. Following a successful review
and approval, the Thai FDA issued a certificate for the
medical device. The type of certificate, whether
“listed”, “notified”, or “licensed”, depends on the risk
classification assigned to the device. Subsequently, the
issued certification allows the manufacturer to gain
authorization to manufacture or import the medical
device in Thailand [8].

1.2. Medical Device Software Quality
Assurance and Assessment Eco-
system

Medical Device Software Quality refers to the compre-
hensive set of characteristics, standards, and pro-
cesses established to ensure that software integrated
into medical devices meets predefined quality criteria.
This commitment encompasses various elements to
guarantee the software's safety, effectiveness, and re-
liability.

The Medical Device Software Assessment Ecosys-
tem functions as a holistic framework, orchestrating
crucial processes, adhering to standards, involving
stakeholders, and utilizing tools to evaluate software
integrated into medical devices' quality, safety, and
regulatory compliance. This complex ecosystem,
which is based on established standards such as IEC
62304 [1], ISO 13485 [3], and ISO 14971 [2], provides

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

a solid foundation for assessment processes. Quality
Management Systems (QMS) are pivotal, overseeing
the entire software development life cycle and ensur-
ing meticulous documentation and training. The eco-
system integrates robust risk management processes,
verification and validation (V&V) activities, and config-
uration management, as well as change control proce-
dures. Internal and external audit mechanisms gauge
adherence to quality standards, while post-market
surveillance mechanisms monitor the real-world per-
formance of the software.

Before the release of the MDS to the market, the
manufacturer developed the medical device in compli-
ance with established standards. Subsequently, the
documentation is forwarded to a testing laboratory for
verification and validation according to the IEC 62304
[1] standards. The resulting test report, upon release,
is utilized for submission to either the Certification
Body (CB) or the Regulatory Body (RB). Once the MDS
has successfully undergone registration procedures
from the Thai FDA [6], the manufacturer is then au-
thorized to release the MDS to the market to the con-
sumer.

Figure 3: MDS pre-market activities in Thailand.

The MDS assessment approach thoroughly exam-
ines the MDS development processes through docu-
mentation examination. This process involves a de-
tailed analysis of the system's internal components,
ensuring a systematic and comprehensive testing pro-
cess and other elements of the software life cycle men-
tioned in Section 1. However, manufacturers who fail
to provide the mentioned elements or only partially of-
fer them may be required to request alterations to add
information to the document. Manufacturers who do
not give any information would fail the testing out-
come.

The assessor evaluates three key components of
the documents: completeness, accuracy, and con-
sistency of the submitted information. These criteria
ensure that the documentation adequately reflects the
development processes and meets IEC 62304 [1] in the
assessment approach.

The assessment report, also known as the test re-
port, guarantees standard compliance during software
development through product release phases. This
verifies the safety of the system and confirms the
proper functioning of the MDS. The guarantee empha-
sizes that the development process has been rigorous
and thorough, ensuring that the MDS meets user re-
quirements and is fit for use. Additionally, it assures
compliance with specified standards of accuracy,
safety, and regulatory requirements.

The comprehensive MDS quality has highlighted
the complete regulatory frameworks. The essential
components of quality assurance and assessment eco-
systems require delving into the intricate development
process, testing, and regulatory compliance.

This work aims to gain insights into robust pro-
cesses and frameworks that govern the development

and deployment of MDS, contributing to the broader
landscape of healthcare technology.

2. Literature Review
The literature encompasses a diverse range of topics
related to regulatory compliance and software evalua-
tion of MDS. Literature delves into the regulation’s
framework compliance to physical medical devices
and MDS in the EU. Furthermore, another piece of lit-
erature investigates the evaluation of MDS by the Aus-
tralian Therapeutic Goods Authority (TGA) [9], em-
phasizing standards including IEC 62304 [1], ISO
14971 [2], and ISO 13485 [3].

The study published by Granlund et al. [10] exten-
sively explores medical devices under the CE mark
[11] and the European Commission (EU) [12], focusing
on the regulatory frameworks and challenges associ-
ated with their evaluation and development. The re-
search highlights the reliance on the Council Directive
93/42/EEC on Medical Devices (MDD) [13] and
MEDDEV [14] documents for a standardized applica-
tion within the CE mark [11] and EU [12]. The chal-
lenge organizations face in developing MDS to meet
the regulatory requirements of medical devices is that
there is no distinction between physical medical de-
vices and standalone software criteria, by classifying
both as medical devices.

The paper highlights several regulatory require-
ment mismatches between physical medical devices
and standalone MDS, such as the design change ap-
proval process, the use of public cloud computing plat-
forms, the regulation of artificial intelligence and ma-
chine learning, and the implementation of a quality
management system. The authors emphasize the need
for a more streamlined software development and cer-
tification process and precise AI/ML-driven systems
guidelines. They also suggest that smaller manufactur-
ers could benefit from cooperation or partnerships to
navigate the complexities of regulatory compliance in
the cloud computing environment.

Ceross and Bergmann's [15] study focuses on re-
calls and adverse events associated with Software as a
Medical Device (SaMD) in Australia. SaMD is distin-
guished from medical devices with software, and data
is collected from three Australian Therapeutic Goods
Authority (TGA) [9] databases. The analysis reveals
over ninety cases of recall and adverse events for
SaMD, with fewer than thirty cases for medical devices
with software. The study identifies challenges in risk
evaluation associated with SaMD, citing limited regu-
latory vocabulary for software defects as a key obsta-
cle. The need for regulatory vocabulary support for
software developers during early-stage research and
development is emphasized, and integration into com-
puter science courses is proposed.

This literature exposes regulatory challenges
across various SaMD types stemming from misinter-
pretation and a lack of guidance. Existing regulatory
requirements do not adequately support diverse SaMD
categories, including post-market development proce-
dures and AI MDS. Identifying these challenges under-
scores the necessity for a tool to assist manufacturers
in overcoming significant obstacles in MDS develop-
ment.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

3. Medical Device Software
Evaluation

The Software Quality Testing Laboratory (SQUAT) [16]
is Thailand's first software testing laboratory certified
with TIS 17025 (ISO/IEC 17025 [17]) (Certificate No.:
19T016/0793) by the Thai Industrial Standards Insti-
tute (TISI) [18], under the Ministry of Industry. Oper-
ating under the Software Engineering and Product
Testing Section (SEPT) at the National Electronics and
Computer Technology Center (NECTEC) [19], SQUAT
is dedicated to verifying system performance by fol-
lowing the criteria outlined in IEC 62304.

Having conducted many MDS evaluations at
SQUAT, the challenges encountered while evaluating
MDS became evident. Twenty-three MDS evaluation
cases from different manufacturers were analyzed,
comprising twenty systems classified as Software
Safety Class A and three systems classified as Software
Safety Class B. The evaluation results, categorized into
Pass and Fail for each IEC 62304 [1] clause, revealed
that six out of twenty-three manufacturers achieved a
fully-passed result. At the same time, the remaining
seventeen had a failed outcome.

Further analysis indicated a predominant trend of
more failed results than passed in each IEC 62304 [1]
clause across all cases. Notably, only clause 4 had a
higher pass rate, with twelve cases passing and eleven
failing. However, clause 7 has the second highest pass
rate, with ten cases passing and thirteen failing. The
other four clauses resulted in a majority of failed as-
sessments. Clauses 5 and 9 had eight passed cases and
fifteen failed cases. Meanwhile, clauses 6 and 8 showed
similar patterns of seven passed and 16 failed results.

In clause 4, the documentation lacks details re-
garding the decomposition of the software system into
software items. Moreover, when a software item is fur-
ther decomposed into additional software items, these
inherit the software safety classification of the original
software item (or software system) unless the manu-
facturer provides a rationale for classifying them dif-
ferently. Additionally, the rationale should elucidate
how the new software items are separated to warrant
distinct classification. Suppose the software safety
class of a newly created software item differs from the
class of the software item from which it was decom-
posed. In that case, the manufacturer must document
the safety class of each software item. Furthermore,
there is often an absence of information regarding the
identification of legacy software, the rationale for its
use, and the risk management associated with legacy
software.

In clause 5, specifically under sub-clause 5.1 (Soft-
ware Development Planning), the deliverables, which
encompass documentation of activities and tasks, of-
ten fall short of achieving the intended goals. The plan-
ning related to software configuration and change
management, including software configuration items,
system integration, verification and validation, risk
management, and the software development life cycle,
exhibits a high incidence of failure. In sub-clause 5.2
(Software Requirement Analysis), manufacturers fre-
quently fail to identify all software requirements, such
as functional and capability requirements, software

system inputs and outputs, interfaces with other sys-
tems, software-driven alarms, warnings, and operator
messages, security requirements, user interface re-
quirements implemented by software, data definition
and database requirements, installation and ac-
ceptance requirements at the operation and mainte-
nance site, requirements related to methods of opera-
tion and maintenance, IT-network aspects, user
maintenance requirements, and regulatory require-
ments.

Figure 4: Passed/failed results of MDS evaluations ac-
cording to IEC 62304.

Moreover, in sub-clause 5.7 (Software System
Testing), there is a failure to provide documentation in
uniformity with a) reference to test case procedures
showing required actions and expected results, b) the
test result (pass/fail and a list of anomalies); c) the ver-
sion of software tested; d) relevant hardware and soft-
ware test configurations; e) relevant test tools; f) date
tested; and g) the identity of the person responsible for
executing the test and recording the test results. Lastly,
in sub-clause 5.8 (Software Release for Utilization at a
System Level), the manufacturer must establish proce-
dures to ensure the released MDS can be reliably deliv-
ered without corruption or unauthorized change.
These procedures should address the production and
handling of MDS media, including replication, media
labeling, packaging, protection, storage, and delivery,
as appropriate.

In clause 6 (Software Maintenance Process), there
is a deficiency in having a software maintenance plan
to conduct activities and tasks related to receiving,
documenting, evaluating, resolving, and tracking. The
usage of the software problem resolution process for
analyzing and resolving issues that arise after the re-
lease of the MDS is often not adequately addressed. In
sub-clause 6.2 (Problem and Modification Analysis),
the documentation and evaluation of feedback to as-
certain the existence of a problem in a released MDS is
either not generated or inconsistently conducted. Ad-
ditionally, there is a lack of effective implementation of
the software problem resolution process to generate
problem reports. Consequently, the evaluation and ap-
proval of change requests based on the problem re-
ports fail to be addressed appropriately. As a result,
there is a failure to identify the approved change re-
quests that impact the released MDS.

In sub-clause 6.3 (Modification Implementation),
the manufacturer must modify the instructions out-
lined in clause 5. Additionally, the release of modifica-
tions must align with the provisions specified in 5.8

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

(Software Release for Utilization at a System Level),
but these requirements are frequently not fulfilled.

In clause 7 (Software Risk Management Process),
there is a failure to maintain the risk management of
software changes under sub-clause 7.4. The manufac-
turer must identify hazardous situations, conduct risk
analysis, and implement software risk control
measures corresponding to those situations. This en-
sures an evaluation of potential hazards that may arise
following software changes.

In clause 8 (Software Configuration Management
Process), most cases fail in sub-clause 8.2 (Change
Control). Manufacturers must identify and perform
any activities that need to be repeated due to the
change, including changes to the software safety clas-
sification of software systems and software items.
However, manufacturers often fail to verify the change,
neglecting to repeat any verification invalidated by the
change and failing to account for 5.7 (Software System
Testing) and 9.7. Additionally, in sub-clause 8.3, most
manufacturers fail to retain retrievable records of the
history of controlled configuration items.

For clause 9 (Software Problem Resolution Pro-
cess), most manufacturers failed to identify and pre-
sent the process for problem reporting, investigating,
and evaluating emerging problems and communi-
cating the problem's existence to relevant parties, as
appropriate. The manufacturer approves and imple-
ments all change requests, ensuring adherence to the
requirements of the change control process. Further-
more, the manufacturer maintains records of problem
reports and their resolution, including verification,
and updates the risk management file as appropriate.
Additionally, the manufacturer analyzes to detect
trends in problem reports. Conducting testing, retest-
ing, or regression testing of software items and sys-
tems after changes is essential. The manufacturer is re-
quired to include the following elements in the test
documentation: a) test results, b) anomalies found, c)
the version of software tested, d) relevant hardware
and software test configurations, e) relevant test tools,
f) date of the test, and g) identification of the tester.

The obstacles that resulted in unsuccessful MDS
evaluations primarily stemmed from language transla-
tion issues and a limited understanding of the inter-
connected nature of Software Engineering and IEC
62304 [1]. These challenges led to incomplete docu-
ment submissions, generating uncertainty about the
necessary content inclusion. Additionally, manufactur-
ers, mainly with an engineering background, encoun-
tered difficulties comprehending the standard's con-
textual nuances. Lastly, adherence to IEC 62304 [1]
guidelines faced constraints due to copyright limita-
tions.

The challenges identified in the MDS evaluation
process underscore the critical need for targeted solu-
tions to enhance understanding, compliance, and effec-
tive documentation, particularly in adherence to IEC
62304 [1]. The issues identified, such as language
translation complexities, limited comprehension of
software engineering principles, and constraints re-
lated to copyright, highlight the intricate landscape
that manufacturers navigate during the evaluation
process.

4. Experience-based Solution
Based on experience, various solutions, including
short course training (onsite training), information on
websites, and other technologies, have been explored
to address the challenges highlighted in the preceding
section.

Short course training emerges as a promising solu-
tion, offering instructors who elucidate the nature and
ecosystem of IEC 62034 [1]. The exercises conducted
during these courses prove beneficial in helping train-
ees grasp the concepts and context of IEC 62304 [1].
However, the associated costs of short course training
can be prohibitively high, and the inflexible location
and schedule may pose challenges for trainees. While
hiring a consultant is an effective solution, its afforda-
bility remains a concern for manufacturers. Alterna-
tively, numerous websites provide information and ex-
planations on IEC 62304 [1] but lack a structured out-
line or instructions on applying the standards and pro-
ducing required documents.

A potential solution lies in the utilization of chat-
bots. These AI-powered tools offer a simple, quick, and
flexible means of assisting manufacturers in creating
IEC 62304 [1] documentation. Embedding chatbots
into websites or instant messaging software can offer
support for IEC 62304 [1] knowledge. The recent re-
lease of ChatGPT [20] provides an opportunity, alt-
hough developing a similar chatbot poses challenges.

This chatbot can be divided into two parts: one for
learning user-entered keywords and sentences and
another for understanding the regulatory framework,
including IEC 62304 [1]. This involves training the bot
to fetch essential template links and files for users. The
chosen technology for this endeavor is Botpress [21],
primarily because of its compatibility with WordPress
websites, enabling seamless chatbot integration into
an existing platform.

The Botpress [21] architecture for addressing in-
quiries related to the IEC 62304 [1] standard is struc-
tured to provide an intelligent and adaptable chatbot
experience. Users interact with the system via a user
interface connected to the Botpress Core [21]. The In-
tegration with Generative AI [22], exemplified by mod-
els like GPT-3 [23], enhances language understanding
and facilitates content generation. User inputs un-
dergo Natural Language Processing (NLP) [24] to iden-
tify intent and context, directing queries to the IEC
62304 Query Handler, which interprets and retrieves
relevant information from the knowledge base. Exter-
nal resources are accessed through connectors, and an
AI training interface ensures ongoing knowledge base
updates. The architecture incorporates security
measures, logging, analytics tools for user interactions,
multi-channel support, and a continuous improvement
module that collects feedback for iterative enhance-
ment. The workflow of Botpress [21] is illustrated in
Figure 5.

In conclusion, exploring solutions based on a range
of experiences emphasizes the potential of chatbots
and generative AI to address challenges in compre-
hending and applying IEC 62304 standards [1].

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Figure 5: Workflow of Botpress [21].

5. Conclusion
In conclusion, the presented guidelines for improving
MDS assessment in Thailand offer a comprehensive
framework to enhance MDS's quality, safety, and regu-
latory compliance. The importance of adhering to in-
ternational standards, such as IEC 62304 [1], ISO
13485 [3], and ISO 14971 [2], has been underscored
throughout the guidelines, emphasizing the need for a
robust quality management system.

Incorporating innovative solutions, including inte-
grating chatbots using technologies like Botpress [21],
showcases a forward-looking approach to addressing
challenges in understanding and implementing com-
plex standards. By leveraging AI-driven tools, manu-
facturers can benefit from quick, flexible, and accessi-
ble support in creating IEC 62304 [1] documentation,
ultimately contributing to streamlined processes and
improved compliance.

Furthermore, the guidelines advocate for a contin-
uous improvement mindset, focusing on ongoing train-
ing, user feedback, and data analysis to adapt to evolv-
ing standards and industry best practices. The empha-
sis on multi-channel support, security measures, and
the incorporation of generative AI highlights a commit-
ment to creating a comprehensive and user-friendly
ecosystem for MDS assessment.

Overall, these guidelines provide a roadmap for
manufacturers, assessors, and regulatory bodies in
Thailand to navigate the intricate landscape of MDS as-
sessment, fostering a culture of quality, innovation,
and regulatory adherence in the rapidly advancing
field of healthcare technology.

References
[1] ISO. "IEC 62304:2006/Amd 1:2015 Medical de-

vice software - Software life cycle processes -
Amendment 1." https://www.iso.org/stand-
ard/64686.html.

[2] ISO. "ISO 14971:2019 Medical devices - Applica-
tion of risk management to medical devices."
https://www.iso.org/standard/72704.html.

[3] ISO. "ISO 13485:2016." https://www.iso.org/
iso-13485-medical-devices.html.

[4] "FDA THAI: Food and Drug Administration, Thai-
land." https://en.fda.moph.go.th/entrepreneurs-
medical-devices/category/how-to-apply-for-
permission-on-medical-devices/.

[5] "IEC 60601-1:2005+AMD1:2012+AMD2:2020
CSV | IEC Webstore." https://webstore.iec.ch/
publication/67497.

[6] "Thai FDA" https://en.fda.moph.go.th/ home.
[7] "Health Sciences Authority (HSA)."

https://www.hsa.gov.sg (accessed 2022-08-23).
[8] "FDA THAI: Food and Drug Administration, Thai-

land." [Online]. https://en.fda.moph.go.th/entre-
preneurs-medical-devices/category/how-to-ap-
ply-for-permission-on-medical-devices/.

[9] T. G. Administration. "Therapeutic Goods Admin-
istration (TGA) | Australian Government Depart-
ment of Health." https://www.tga.gov.au/

[10] T. Granlund, T. Mikkonen, and V. Stirbu, "On med-
ical device software CE compliance and conform-
ity assessment," in 2020 IEEE International Con-
ference on software architecture companion
(ICSA-C), 2020: IEEE, pp. 185-191.

[11] "CE marking," https://single-market-econ-
omy.ec.europa.eu/single-market/ce-mark-
ing_en.

[12] "European Commission, official website,"
2023/11/15/ 2023. https://commission.eu-
ropa.eu/index_en.

[13] CONSIL, (1993, 1993/06/14/). OJ L 169, Council
Directive 93/42/EEC of 14 June 1993 concerning
medical devices.

[14] "MEDDEV Guidance List - Download," in Medical
Device Regulation, ed.

[15] A. Ceross and J. Bergmann, "Evaluating the pres-
ence of software-as-a-medical-device in the Aus-
tralian therapeutic goods register," Prosthesis,
vol. 3, no. 3, pp. 221-228, 2021 2021.

[16] "Software Quality Testing Laboratory (SQUAT)."
https://www.squat.in.th/.

[17] "ISO - ISO/IEC 17025 — Testing and calibration
laboratories," ISO, 2021/01/26/ 2021. [Online].
Available: https://www.iso.org/ISO-IEC-17025-
testing-and-calibration-laboratories.html.

[18] "Thai Industrial Standards Institute (TISI)."
https://www.tisi.go.th/home/en.

[19] "Home - NECTEC: National Electronics and Com-
puter Technology Center," ed, 2007.

[20] "Introducing ChatGPT,". https://openai.com/
blog/chatgpt.

[21] "Botpress | the Generative AI platform for
ChatGPT Chatbots," https://botpress.com/.

[22] "Generative AI", Generative AI. https://genera-
tiveai.net.

[23] "GPT-3," in Wikipedia, ed, 2023.
[24] "Natural language processing," in Wikipedia, ed,

2023.

1 User inputs an inquiry related to IEC 62304.

2 NLP processes the input and identifies the intent and entities.

3
The IEC 62304 Query Handler fetches relevant information from

the knowledge base.

4
Generative AI enhances language understanding and generates

detailed responses.

5 External resources are accessed and provided to the user.

6 User feedback is collected for continuous improvement.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Identifying Vulnerable Functions from Source Code using
Vulnerability Reports
Rabaya Sultana Mim, Toukir Ahammed and Kazi Sakib

Institute of Information Technology, University of Dhaka, Dhaka, Bangladesh

Abstract
Software vulnerability represents a flaw within a software product that can be exploited to cause the system to violate
its security. In the context of large and evolving software systems, developers find it challenging to identify vulnerable
functions effectively when a new vulnerability is reported. Existing studies have underutilized vulnerability reports which
can be a good source of contextual information in identifying vulnerable functions in source code. This study proposes an
information retrieval based method called Vulnerable Functions Detector (VFDetector) for identifying vulnerable functions
from source code and vulnerability reports. VFDetector ranks vulnerable functions based on the textual similarity between
the vulnerability report corpora and the source code corpora. This ranking is achieved modifying conventional Vector Space
Model to incorporate the size of a function which is known as the tweaked Vector Space Model (tVSM). As an initial study, the
approach has been evaluated by analysing 10 vulnerability reports from six popular open-source projects. The result shows
that VFDetector ranks the actual vulnerable function at first position in 40% cases. Moreover, it ranks the actual vulnerable
function within rank 5 in 90% cases and within rank 7 for all analysed reports. Therefore, developers can use these results to
implement successful patches on vulnerable functions more quickly .

Keywords
vulnerability identification, vulnerable function, vulnerability report, source code, vector space model

1. Introduction
A software vulnerability is a flaw, weakness, or error in
a computer program or system that can be exploited by
malicious attackers to compromise its integrity, availabil-
ity, or confidentiality [1]. Software vulnerabilities make
software systems increasingly vulnerable to attack and
damage, which raises security concerns [2].

Developers need to spend a lot of time in identifying
vulnerable function from large codespace when a new
vulnerability is reported. Identifying vulnerable func-
tions effectively is a perquisite of writing a patch for the
reported vulnerability. This is essential for enhancing
software security by addressing vulnerabilities to miti-
gate potential risks and threats more effectively at earliest
time.

Existing studies have focused on detecting software
vulnerabilities employing text-based [3, 4, 5] or graph-
based [6, 7] approaches. These approaches either treat
source code as plain text or apply graph analysis by rep-
resenting the source code as graph. In practice, prior
text-based studies treat source code as plain text and
apply static program analysis or natural language pro-
cessing. However, the performance of these approaches
is not optimal for disregarding the source code seman-
tics. On the other hand, graph based approaches conduct

QuASoQ 2023: 11th International Workshop on Quantitative
Approaches to Software Quality, December 04, 2023, Seoul, Korea
$ msse1730@iit.du.ac.bd (R. S. Mim); toukir@iit.du.ac.bd
(T. Ahammed); sakib@iit.du.ac.bd (K. Sakib)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

program analysis which represent the source code seman-
tics as a graph, and then apply graph analysis methods
such as Graph Neural Networks (GNN) [8] to identify
vulnerabilities. Although these graph-based approaches
are more efficient at identifying vulnerabilities taking
into account the semantic relationship of various lines
of source code but their scalability is substantially less
than that of text-based approaches.

However, existing studies have underutilized vulnera-
bility reports which can be a good source of contextual
information to detect vulnerability in source code. In
this context, the current study aims to verify the role of
vulnerability reports in identifying vulnerable function.
Vulnerability report can contain contextual information
about a vulnerability which may be used to identify vul-
nerable functions. When a function is vulnerable against
a scenario some keywords should be shared between that
function and the vulnerability report. These motivate the
authors to study whether vulnerable functions can be
identified by analysing the source code and vulnerability
report.

For this purpose, this study proposes a technique of
automatic software vulnerable function identification
namely VFDetector. It takes all source code files of a
system as input. First, it extracts all source code func-
tions of that system. Then static analysis is performed
to extract the contents of those functions. Several text
pre-processing analysis such as tokenization, stopwords
removal, multiword splitting, semantic meaning extrac-
tion and lemmatization are applied on these source code
along with the vulnerability report to produce code and

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

mailto:msse1730@iit.du.ac.bd
mailto:toukir@iit.du.ac.bd
mailto:sakib@iit.du.ac.bd
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

report corpora. In addition, programming language spe-
cific keywords is removed for generating code corpora.
Finally, to rank the vulnerable functions, similarity scores
are measured between the code corpora of the functions
and report corpora by a modified version of Vector Space
Model (tVSM) where larger methods get more weight
while ranking.

In experiments, as an initial study ten Common Vul-
nerabilities and Exposures (CVE) reports are chosen ran-
domly from six open source GitHub repositories. Based
on the commit link available in reports we crawled
the corresponding projects before the vulnerability was
patched. The result analysis shows that VFDetector ranks
the vulnerable functions at the first position in 40% cases,
whereas it ranks the actual vulnerable function within
top 5 in 90% cases and within top 7 in 100% cases.

It is evident from the results that VFDetector performs
promisingly in detecting vulnerable functions against a
vulnerability report in a large scale software systems. It
is also observed that in Top 5 and Top 7 ranking, the
functions which ranks above the actual vulnerable func-
tion are the related functions of that vulnerability which
acquires higher similarity. It guides a developer to patch
those related functions too in order to mitigate that vul-
nerability from the system.

The remainder of this paper is structured as follows:
Section 2 gives an overview of previous studies on vul-
nerability detection at file level or function level. Section
3 describes our methodology for detecting vulnerable
functions in a project. Section 4 reports our experimental
findings and the analysis thereof. Section 5 demonstrates
the threats to validity of our work. Section 6 motivates
future research directions and concludes this paper.

2. Related Work
In recent years, the research community has directed
significant attention toward the issue of vulnerability
detection, primarily due to the complex challenges it
presents. The existing body of literature has introduced
numerous methodologies in response to these challenges.
These methods can be classified into three distinct cate-
gories based on the degree of automation: manual, semi-
automatic, and fully automatic techniques.

Manual techniques rely on human experts to create
vulnerability patterns. However, all patterns can not be
generated manually, which leads to reduced detection effi-
ciency in practical scenarios. In contrast, semi-automatic
techniques involve human experts in the extraction of
specific features like API symbols [9] and function calls
[10], which are then fed into traditional machine learn-
ing models for vulnerability detection. Full-automatic
techniques utilize Deep Learning (DL) to automatically
extract features and construct vulnerability patterns with-

out manual expert intervention. Recently, DL based tech-
niques [11, 12, 13] has gained extensive use in detecting
source code vulnerabilities due to its ability to automati-
cally extract features from source code. DL based meth-
ods can be categorized into text-based and graph-based
methods.
Text based methods: The text-based approach in

vulnerability detection treats a program’s source code as
text and employs natural language processing techniques
to identify vulnerabilities. Russell et al. [3] introduced
the TokenCNN model, which utilizes lexical analysis to
acquire source code tokens and employs a Convolutional
Neural Network (CNN) to detect vulnerabilities.

Li et al. [4] proposed Vuldeepecker, a method that
collects code gadgets by slicing programs and transforms
them into vector representations, training a Bidirectional
Long Short Term Memory (BLSTM) model for vulnera-
bility recognition.

Zhou et al. [5] introduced µVulDeePecker, which en-
hances Vuldeepecker by incorporating code attention
with control dependence to detect multi-class vulnera-
bilities. However, the performance of these text-based
approaches is limited because they rely solely on static
source code analysis and do not account for the program
semantics.
Graph based methods: To address the limitations

of text-based methods, researchers have turned to dy-
namic program analysis to convert a program’s source
code semantics into a graph representation facilitating
vulnerability detection through graph analysis. Zhou et
al. [6] introduced Devign which employs a graph neural
network for vulnerability identification. This approach
includes a convolutional module that efficiently extracts
critical features for graph-level classification from the
learned node representations. By pooling the nodes, a
comprehensive representation for graph-level classifica-
tion is achieved.

Cheng et al. [7] introduced a different approach named
Deepwukong which divides the program dependency
graph into various subgraphs after distilling the program
semantics based on program points of interest. These
subgraphs are then utilized to train a vulnerability de-
tector through a graph neural network. While these
graph-based techniques prove more effective in identify-
ing vulnerabilities but it is important to note that their
scalability is worse than text based methods due to large
number of graph nodes in complex program.

Exploring the existing literature, it is evident that text-
based methods lacks in incorporating program semantics
while graph-based methods achieve high accuracy consid-
ering source code semantics but have scalability issues in
complex scenarios. Moreover, due to the underutilization
of contextual information like vulnerability reports with
source code existing methods fails to detect complicated
vulnerabilities in real-world projects. Because whenever

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

a new vulnerability is reported in a system it is hard to
detect in which function the vulnerability exist as the
system consist of huge volume of functions. Before using
vulnerable reports as a source of contextual information
in existing methods, it is important to verify whether
vulnerable functions can be identified effectively using
these reports. Moreover, identifying vulnerable functions
using vulnerability reports can play an effective role to
minimize the search space in existing methods.

3. Methodology
This study proposes an approach which detects vulner-
able functions from huge volume of files of a large soft-
ware system using vulnerability reports. The overall
process of this approach consist of three distinct steps
and those are Source Code Corpora Generation, Vulnera-
bility Report Corpora Generation, Ranking Vulnerable
Functions. Each of these steps encompasses a series of
tasks as illustrated in Figure 1. At first, all files and their
corresponding functions are extracted from a particular
version of a software system. Then these source code is
processed to create code corpora. Similarly vulnerability
report is processed to produce report corpora. Finally,
similarity between the report and code corpora is mea-
sured using tweaked Vector Space Model (tVSM) to rank
the vulnerable source code functions.

3.1. Dataset
We used the benchmark dataset Big-Vul1 developed by
Fan et al. [14]. This dataset comprises reliable and com-
prehensive code vulnerabilities which are directly linked
to the publicly accessible CVE database. Notably, the cre-
ation of this dataset involved a significant investment of
manual resources to ensure its high quality. Furthermore,
this dataset is noteworthy for its substantial scale, being
one of the most extensive vulnerability datasets avail-
able. It is derived from a collection of 348 open-source
Github projects, encompassing a time span from 2002
to 2019, and covers 91 distinct Common Weakness Enu-
meration (CWE) categories. This comprehensive dataset
comprises approximately 188,600 C/C++ functions, with
5.6% of them identified as vulnerable (equivalent to 10,500
vulnerable functions). This dataset provides granular
ground-truth information at the function level, specify-
ing which functions within a codebase are susceptible to
vulnerabilities.

1https://github.com/ZeoVan/MSR_20_Code_vulnerability_
CSV_Dataset

3.2. Source Code Corpora Generation
Source code corpora consist of source code terms used
to assess similarity with vulnerability report corpora.
Therefore, the precision of code corpora generation di-
rectly impacts the precision of matching, consequently
enhancing the accuracy of vulnerability localization. In
this step all the folders are extracted from a system with
their corresponding C/C++ files. From each of these files
all functions are extracted automatically in individual C
files which ensures function level analysis. For Example:
CVE-2014-2038 of Linux version 3.13.5 consist of 15,675
files which has total 229,682 functions.

This stage generates a vector of lexical tokens by do-
ing lexical analysis on every source code file. There are
unnecessary tokens in source code which do not contain
any vulnerability related information. These tokens are
discarded from source code such as programming lan-
guage specific keywords (e.g., int, if, float, switch, case,
struct), stop words (e.g., all, and, an, the). Many words in
the source code may include multiple words. For exam-
ple, the term "addRequest" consists of the keywords "add"
and "Request". Mutiwords are separated using multi word
identifier. Furthermore, statements are divided according
to certain syntax-specific separators like ‘ , ’, ‘=’, ‘(’, ‘)’, ‘{’,
‘}’, ‘/’, and so on. WordNet2 is used to derive each word’s
semantic meanings because a term might have more than
one synonym. In specific cases, developers and Quality
Assurance (QA) personnel may employ different termi-
nology, even though they are referring to the same sce-
nario with equivalent meanings. For example, the term
‘finalize’ may have multiple synonyms such as ‘conclude’
or ‘complete.’ When describing a situation, if a developer
uses ‘finalize’ but QA opts for ‘conclude’, it’s challenging
for the system to identify these variances without consid-
ering the semantic meanings of these words. Therefore,
the extraction of semantic meaning is crucial in achieving
accurate rankings for vulnerable functions.

The final stage of code corpora generation incorpo-
rates WordNet lemmatization, a technique that normal-
izes words to their base or dictionary form. WordNet
lemmatization utilizes the comprehensive WordNet lex-
ical database, organizing words into synonymous sets
called synsets. This method identifies word lemmas based
on the word’s part of speech and context within Word-
Net, offering a more context-aware approach to lemma-
tization. As a result, it considers a word’s meaning and
contextual usage, allowing for precise reduction of words.
For instance, it transforms "running" to "run" and "better"
to "good" based on their meanings and parts of speech,
unlike standard lemmatization that typically relies on
suffix removal.

2https://wordnet.princeton.edu/

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

https://github.com/ZeoVan/MSR_20_Code_vulnerability_CSV_Dataset
https://github.com/ZeoVan/MSR_20_Code_vulnerability_CSV_Dataset
https://wordnet.princeton.edu/

Figure 1: Overview of VFDetector

3.3. Vulnerability Report Corpora
A software vulnerability report contains information like
description about the vulnerability, severity rating, vul-
nerability identifier (CVE-ID), reference to additional
sources which gives valuable insights about a software
vulnerability issue. However, these reports can also in-
clude irrelevant terms such as stop words and words in
various tenses (present, past, or future). To refine vulner-
ability reports, pre-processing is necessary. In the initial
stage of vulnerability report corpora creation, stop words
are eliminated. We apply WordNet Lemmatizer, similar
to what’s used for source code corpora generation, to
generate refined report corpora containing only relevant
terms.

3.4. Ranking Vulnerable Functions
In this step, relevant vulnerable functions are ranked
based on the textual similarity between the query (re-
port corpus) and each of the function in the code corpus.
Vulnerable functions are ranked by applying tVSM. We

employ tVSM, which modifies the Vector Space Model
(VSM) by emphasising large-scale functions. In tradi-
tional VSM, the cosine similarity is used to measure the
ranking score between the associated vector representa-
tions of a report corpus (r) and function (f), according to
Equation 1.

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑟, 𝑓) = 𝑐𝑜𝑠(𝑟, 𝑓) =
𝑉�⃗� · 𝑉�⃗�

|𝑉�⃗�| · |𝑉�⃗� |
(1)

Here, 𝑉�⃗� and 𝑉�⃗� are the term vectors for the vulner-
ability report (r) corpus and function (f) corpus respec-
tively. Throughout the years, numerous adaptations of
the tf(t,d) function have been introduced with the aim of
enhancing the VSM model’s effectiveness. These encom-
pass logarithmic, augmented, and Boolean modifications
of the traditional VSM [15]. It has been noted that the
logarithmic version can yield improved performance, as
indicated by prior studies [16, 17, 18]. From that point of
view, tVSM modified Equation 1 and uses the logarithm
of term frequency (tf) and iff(inverse function frequency)
to give more importance on rare terms in the functions.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Thus tf and iff are calculated using Equation 2 and 3
respectively.

𝑡𝑓(𝑡, 𝑓) = 1 + 𝑙𝑜𝑔𝑓𝑡𝑓 (2)

𝑖𝑓𝑓 = 𝑙𝑜𝑔(
#𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑛𝑡
) (3)

Here, 𝑓𝑡𝑓 represents the frequency of a term 𝑡 appearing
in a function 𝑓 , #𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 denotes the total count of
functions within the search space, 𝑛𝑡 signifies the overall
number of functions that include the term 𝑡. Thus in
equation 4 each term weight is calculated as follows:

𝑤𝑒𝑖𝑔ℎ𝑡𝑡∈𝑓 = (𝑡𝑓)𝑡𝑓 × (𝑖𝑓𝑓)𝑡

= (1 + 𝑙𝑜𝑔𝑓𝑡𝑓)× 𝑙𝑜𝑔(
#𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑛𝑡
)

(4)

The VSM score is calculated using equation 5.

𝑐𝑜𝑠(𝑟, 𝑓) =
∑︁

𝑡∈𝑟∩𝑓

(1 + log 𝑓𝑡𝑟)× (1 + log 𝑓𝑡𝑓)× 𝑖𝑓𝑓2×

1√︀∑︀
(1 + log 𝑓𝑡𝑟)× 𝑖𝑓𝑓2

× 1√︀∑︀
(1 + log 𝑓𝑡𝑓)× 𝑖𝑓𝑓2

(5)

Traditional VSM tends to give preference to smaller
functions when ranking them, which can be problem-
atic for large functions because they may receive lower
similarity scores. Past research [19, 20, 21] has indicated
that larger source code files are more likely to contain
vulnerabilities. Therefore, in the context of vulnerability
localization, it’s crucial to prioritize larger functions in
our ranking. To address this issue, we introduce a func-
tion denoted as ’x’ (as shown in Equation 6) within the
tVSM model, aiming to account for the function’s length.

𝑥(𝑡𝑒𝑟𝑚𝑠) = 1− 𝑒−𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(#𝑡𝑒𝑟𝑚𝑠) (6)

Equation 6 represents a logistic function, specifically an
inverse logit function, designed to ensure that larger func-
tions receive higher rankings. We employ Equation 6 to

Table 1
List of Analyzed Open Source Projects

Project Name CVE ID Source Code

1 Chrome CVE-2011-3916 github.com/chromium/chromium/tree/f1a59e0513d63758588298e98500cac82ddccb67
2 Radare2 CVE-2017-16359 github.com/radareorg/radare2/tree/1f5050868eedabcbf2eda510a05c93577e1c2cd5
3 Linux CVE-2013-6763 github.com/torvalds/linux/tree/f9ec2e6f7991e748e75e324ed05ca2a7ec360ebb
4 Linux CVE-2013-2094 github.com/torvalds/linux/tree/41ef2d5678d83af030125550329b6ae8b74618fa
5 Linux CVE-2014-2038 github.com/torvalds/linux/tree/a9ab5e840669b19aca2974e2c771a77df2876434
6 ImageMagick CVE-2017-15033 github.com/ImageMagick/ImageMagick/tree/c29d15c70d0eda9d7ffe26a0ccc181f4f0a07ca5
7 Tcpdump CVE-2017-13000 github.com/the-tcpdump-group/tcpdump/tree/a7e5f58f402e6919ec444a57946bade7dfd6b184
8 Tcpdump CVE-2018-14470 github.com/the-tcpdump-group/tcpdump/tree/aa3e54f594385ce7e1e319b0c84999e51192578b
9 FFmpeg CVE-2016-10190 github.com/FFmpeg/FFmpeg/tree/51020adcecf4004c1586a708d96acc6cbddd050a
10 FFmpeg CVE-2019-11339 github.com/FFmpeg/FFmpeg/tree/3f086a2f665f9906e0f6197cddbfacc2f4b093a1

calculate the length value for each source code function
based on the number of terms contained within the func-
tion. Here we apply the normalized value of ’#terms’
as the argument for the exponential function 𝑒−𝑥. The
normalization process is defined in Equation 7.

Let z denote a set of data, with 𝑧𝑚𝑎𝑥 and 𝑧𝑚𝑖𝑛 rep-
resenting the maximum and minimum values of z term,
respectively. The normalized value for z term is deter-
mined as:

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑧) =
𝑧 − 𝑧𝑚𝑖𝑛

𝑧 − 𝑧𝑚𝑎𝑥
(7)

Considering the above analysis, tVSM score is calculated
by multiplying the weight of each function, denoted as
x(terms), with the cosine similarity score represented by
cos(r, f), as described in Equation 8:

𝑡𝑉 𝑆𝑀(𝑟, 𝑓) = 𝑥(𝑡𝑒𝑟𝑚𝑠)× 𝑐𝑜𝑠(𝑟, 𝑓) (8)

Once the tVSM score for each function has been com-
puted, a list of vulnerable functions is arranged in de-
scending order of scores. The function with the highest
similarity score is positioned at the top of the ranked list.

4. Experiment and Result Analysis
This section provides information on the practical imple-
mentation, the criteria used for evaluation and experi-
mental result analysis of this study.

4.1. Implementation
The proposed method is implemented in python (version
3.11.5). The experiment was conducted on an Windows
server equipped with an Intel(R) Core(TM) i5-10300H
CPU processor @3.0GHz and having 64GB of RAM. The
implementation involves various python libraries and
NLTK (Natural Language Toolkit) libraries for text pro-
cessing and feature extraction. It takes function files
as input and provides ranking of suspicious vulnerable
functions as output.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Table 2
Summary of Tested Projects

CVE ID Total Commits Total Files Total Functions Vulnerable Functions VFDetector Ranking

CVE-2017-13000 4,466 180 638 extract_header_length() 1
CVE-2018-14470 4,548 185 640 babel_print_V2() 1
CVE-2017-15033 12,558 586 4,694 ReadYUVImage() 1
CVE-2017-16359 16,362 965 9,197 store_versioninfo_gnu_verdef() 1
CVE-2011-3916 93,104 4,929 15,042 WebGLObject() 2
CVE-2019-11339 93,322 2,572 16,724 mpeg4_decode_studio_block() 2
CVE-2016-10190 82,768 2,286 14,713 http_buf_read() 3
CVE-2014-2038 413,259 15,674 229,682 nfs_can_extend_write() 4
CVE-2013-2094 362,534 18,358 257,550 perf_swevent_init() 5
CVE-2013-6763 401,141 19,260 273,898 uio_mmap_physical() 7

4.2. Evaluation
To conduct this research we used the extensive Big-Vul
dataset which contains large scale vulnerability reports
of C/C++ code from open source GitHub projects. Other
C/C++ datasets can also be used. Based on the highest
number of vulnerabilities reported, we choosed top six
well known projects from this dataset which are Chrome,
Linux, Radare2, ImageMagick, Tcpdump and FFmpeg
as shown in Table 1. As the selected projects are open-
source in nature and are hosted on GitHub, serving as
the primary platform for storing code and managing
version control. It allows us to extract all essential com-
mits for our analysis. Additional information about the
repositories can be found in Table 2. As an initial study,
VFDetector was evaluated using ten vulnerability reports
from these six open-source projects which are chosen
randomly from the dataset. Table 1 lists the analysed
project name, CVE ID of report, and the source code link.

To measure the effectiveness of the proposed vulnera-
bility detection method, we use the Top N Rank metric.
This metric signifies the count of vulnerable functions
ranked in the top N (where N can be 1, 5, or 7) in the ob-
tained results. When assessing a reported vulnerability,
if the top N query results include at least one function
that corresponds to the location where the vulnerability
needs to be addressed, we determine that the vulnerable
function is detected successfully. Table 2 includes ten
vulnerability reports from six open source projects with
their number of commits, total files, total functions, ac-
tual vulnerable functions name and finally VFDetector
ranking in Top N ranked functions in output. The re-
sults of Table 2 shows that among the ten CVE reports
VFDetector ranks the actual vulnerable function at the
1st position for four (40%) reports which are CVE ID
#13000, #14470, #15033, #16359. For five reports (50%)
with CVE ID #3916, #2094, #2038, #10190 and #11339 it
ranks the vulnerable function in Top 5 rank. It indicates
that nine (90%) reports are ranked in Top 5. For one
report CVE-2013-6763 of Linux Kernel version 3.12.1 it
ranks the vulnerable function in Top 7 rank i.e., in 7th

position out of total 273,898 functions. Upon manual
inspection, we observed that the six functions preceding
the vulnerable function exhibit a higher similarity score
compared to the actual vulnerable function. The reason
behind this can be the inter-connectedness of these six
functions with the vulnerable function through function
calls. It is also noticeable that projects with less number
of functions ranks the vulnerable function in 1st position
and with large number of functions the ranking decreases
slightly. The reason behind this is larger projects might
contain more associated functions which are needed to
be fixed in order to address a particular vulnerability.

In summary, the experimental results show that VFDe-
tector can detect vulnerable functions from a huge vol-
ume of functions and can also suggest developers with
the related functions having highest similarity scores
which might need to be patched to address the reported
vulnerability. Moreover, to the best of our knowledge
we are the first to incorporate vulnerability reports in
software vulnerability detection from the concept that
vulnerability report’s description contain conceptual in-
formation about a reported vulnerability. Based on the
promising results in this initial evaluation, the future
work can be analyzing more vulnerable reports from
diverse projects to make the approach comparable and
generalizable.

5. Threats to Validity
In this section, we discussed the potential threats which
may affect the validity of this study.
Threats to external validity: The generalizability

of the acquired results poses a threat to external validity.
The dataset that we used in our research was gathered
from open-source. Open-source projects may contain
data that differs from those created by software compa-
nies with sound management practices. Seven Apache
projects are examined in this study. More projects from
other systems are needed to be evaluated for the gener-
alisation. However, to overcome this threat large-scale

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

diversified projects with long change history is to be
chosen.
Threats to internal validity: One limitation of our

approach is its reliance on sound programming practices
when naming variables, methods, and classes. If a de-
veloper uses non-meaningful names, it could have an
adverse impact on the effectiveness of vulnerability de-
tection.ay not fully represent the characteristics of the
whole program. Additionally, our model is evaluated
with C/C++ functions and it may encounter challenges
in detecting vulnerabilities in other programming lan-
guages.

Threats to construct validity: We used the WordNet
database and lemmatizer of NLTK library as essential
components in text pre-processing to extract word se-
mantics and reduce words to their base forms. Since
these resources are well known for their usefulness in
NLP, we relied on their accuracy. Moreover, vulnerabil-
ity reports offer essential information that developers
rely on to address and patch vulnerable functions. A bad
vulnerability report delays the fixing process. It’s worth
noting that our approach is dependent on the quality of
these reports. If a vulnerability report lacks sufficient
information or contains misleading details, it can have a
detrimental impact on the performance of VFDetector.

6. Conclusion
Once a new vulnerability is reported, developers need to
know which files and particular which function should
be modified to fix the issues. This can be especially chal-
lenging in large software projects, where examining nu-
merous source code files can be time-consuming and
costly.

In this paper, a software vulnerability detection tech-
nique has been proposed named as VFDetector for detect-
ing relevant vulnerable functions based on vulnerability
reports. Since detecting vulnerabilities from vulnerability
report is an information retrieval process, we apply static
analysis on both source code and vulnerability reports to
create code and report corpora. Finally, VFDetector lever-
ages a tweaked Vector Space Model (tVSM) to rank the
source code functions based on the similarity. Our evalu-
ation conducted on six real-world open source projects
show that VFDetector ranks vulnerable functions at the
1st position in most cases.

In future, VFDetector can be applied to industrial
projects to access the generalization of the results in prac-
tice. Besides, dynamic analysis can be incorporated in
this approach to improve detection performance. More-
over, minimizing the search space in a function and pin-
pointing statement-level vulnerabilities is also a potential
future scope.

References
[1] J. Han, D. Gao, R. H. Deng, On the effectiveness

of software diversity: A systematic study on real-
world vulnerabilities, in: International Conference
on Detection of Intrusions and Malware, and Vul-
nerability Assessment, Springer, 2009, pp. 127–146.

[2] H. Alves, B. Fonseca, N. Antunes, Software met-
rics and security vulnerabilities: dataset and ex-
ploratory study, in: 2016 12th European Depend-
able Computing Conference (EDCC), IEEE, 2016,
pp. 37–44.

[3] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer,
O. Ozdemir, P. Ellingwood, M. McConley, Auto-
mated vulnerability detection in source code using
deep representation learning, in: 2018 17th IEEE
international conference on machine learning and
applications (ICMLA), IEEE, 2018, pp. 757–762.

[4] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng,
Y. Zhong, Vuldeepecker: A deep learning-based
system for vulnerability detection, in: Proceedings
of the 25th Annual Network and Distributed System
Security Symposium, 2018.

[5] D. Zou, S. Wang, S. Xu, Z. Li, H. Jin, 𝜇 vuldeepecker:
A deep learning-based system for multiclass vulner-
ability detection, IEEE Transactions on Dependable
and Secure Computing 18 (2019) 2224–2236.

[6] Y. Zhou, S. Liu, J. Siow, X. Du, Y. Liu, Devign: Effec-
tive vulnerability identification by learning compre-
hensive program semantics via graph neural net-
works, Advances in neural information processing
systems 32 (2019).

[7] X. Cheng, H. Wang, J. Hua, G. Xu, Y. Sui, Deep-
wukong: Statically detecting software vulnerabili-
ties using deep graph neural network, ACM Trans-
actions on Software Engineering and Methodology
(TOSEM) 30 (2021) 1–33.

[8] F. Yamaguchi, N. Golde, D. Arp, K. Rieck, Modeling
and discovering vulnerabilities with code property
graphs, in: 2014 IEEE Symposium on Security and
Privacy, IEEE, 2014, pp. 590–604.

[9] F. Yamaguchi, M. Lottmann, K. Rieck, Generalized
vulnerability extrapolation using abstract syntax
trees, in: Proceedings of the 28th annual computer
security applications conference, 2012, pp. 359–368.

[10] S. Neuhaus, T. Zimmermann, C. Holler, A. Zeller,
Predicting vulnerable software components, in:
Proceedings of the 14th ACM conference on Com-
puter and communications security, 2007, pp. 529–
540.

[11] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, Sy-
sevr: A framework for using deep learning to de-
tect software vulnerabilities, IEEE Transactions
on Dependable and Secure Computing 19 (2021)
2244–2258.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

[12] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, H. Jin, Vul-
cnn: An image-inspired scalable vulnerability de-
tection system, in: Proceedings of the 44th Interna-
tional Conference on Software Engineering, 2022,
pp. 2365–2376.

[13] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Y. Zhang, Z. Chen,
D. Li, Vuldeelocator: A deep learning-based system
for detecting and locating software vulnerabilities,
IEEE Transactions on Dependable and Secure Com-
puting (2021).

[14] J. Fan, Y. Li, S. Wang, T. N. Nguyen, A c/c++ code
vulnerability dataset with code changes and cve
summaries, in: Proceedings of the 17th Interna-
tional Conference on Mining Software Repositories,
2020, pp. 508–512.

[15] H. Schütze, C. D. Manning, P. Raghavan, Introduc-
tion to information retrieval, volume 39, Cambridge
University Press Cambridge, 2008.

[16] W. B. Croft, D. Metzler, T. Strohman, Search en-
gines: Information retrieval in practice, volume 520,
Addison-Wesley Reading, 2010.

[17] S. Rahman, K. Sakib, An appropriate method rank-
ing approach for localizing bugs using minimized
search space., in: ENASE, 2016, pp. 303–309.

[18] S. Rahman, M. M. Rahman, K. Sakib, A statement
level bug localization technique using statement
dependency graph., in: ENASE, 2017, pp. 171–178.

[19] N. E. Fenton, N. Ohlsson, Quantitative analysis
of faults and failures in a complex software sys-
tem, IEEE Transactions on Software engineering
26 (2000) 797–814.

[20] T. J. Ostrand, E. J. Weyuker, R. M. Bell, Predicting
the location and number of faults in large software
systems, IEEE Transactions on Software Engineer-
ing 31 (2005) 340–355.

[21] H. Zhang, An investigation of the relationships
between lines of code and defects, in: 2009 IEEE
international conference on software maintenance,
IEEE, 2009, pp. 274–283.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Formalization and Verification of
Go-based New Simple Queue System
Danyang Wang1, Jiaqi Yin2, Sini Chen1 and Huibiao Zhu1

1Shanghai Key Laboratory of Trustworthy Computing. East China Normal University, Shanghai, China
2Northwestern Polytechnical University, Xi’an, China

Abstract
NSQ (New Simple Queue) is a real-time distributed messaging platform implemented by Go language. It’s designed to operate
at scale stably and efficiently handle billions of messages per day. Its decentralized topology guarantees fault tolerance, high
availability, and reliable message delivery. Operationally, NSQ is elastic to configure and deploy. With the broad application of
the NSQ message system, its security and stability have attracted extensive concentration. Therefore, it is crucial to conduct
a rigorous analysis and verification of NSQ’s properties. In this paper, we employ process algebra CSP (Communicating
Sequential Processes) to model the core functional modules of the NSQ. In addition, we utilize the model checker PAT (Process
Analysis Toolkit) to verify five properties of the model, including divergence freedom, reachability, scalability, availability,
and flow controllability. The verification results demonstrate that the NSQ system satisfies all the above properties, proving
that the system has high flexibility and robustness while providing credible and efficient message delivery.

Keywords
NSQ, Messaging System, Communicating Sequential Processes(CSP), Modeling, Verification

1. Introduction
In the rapidly evolving era of the Internet, the explosion
of users and services creates severe challenges for net-
work applications. Conventional monolithic and vertical
service architectures can no longer deal with such a vol-
ume of data. Distributed services are gradually becoming
the mainstream architecture. As a foundational segment
in distributed message systems, middleware [1] is impor-
tant in decoupling, asynchronous communication, traffic
clipping, and other issues. It can improve the perfor-
mance and stability of applications. Therefore, message
queue as a critical middleware acquires more attention
in the Internet field.

With the evolution of technology, message queues
are gradually maturing, resulting in a series of outstand-
ing middleware, including ActiveMQ [2], RabbitMQ [3],
Kafka [4], and RocketMQ [5]. These services decouple
complex systems and enable asynchronous operations
to reduce response times, providing a better user experi-
ence. Although the introduction of middleware can sig-
nificantly improve the performance of a system, we must
consider its potential problems and challenges, such as
reduced availability due to unstable message queues and
data inconsistencies due to concurrent communication.
The system needs to introduce additional mechanisms

QuASoQ 2023: 11th International Workshop on Quantitative
Approaches to Software Quality, December 04, 2023, Seoul, South
Korea
$ 51215902076@stu.ecnu.edu.cn (D. Wang); jqyin@nwpu.edu.cn
(J. Yin); 52265902002@stu.ecnu.edu.cn (S. Chen);
hbzhu@sei.ecnu.edu.cn (H. Zhu)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

to ensure high availability and reachability of messages,
which increases system complexity. Therefore, excellent
message middleware should have high message process-
ing efficiency, robustness, stability, and scalability.

NSQ [6] has emerged from these excellent middlewares
in recent years. It is a distributed messaging platform
based on Go language [9] with outstanding performance,
robustness, and usability. This messaging platform is a
user-friendly middleware for real-time messaging ser-
vices, capable of managing hundreds of millions of mes-
sages. In addition, NSQ is fitted to the current concurrent
Internet ecosystem due to Go’s native strengths in concur-
rency. Go is a programming language with concurrency
features, and its concurrency model was developed based
on the process communication concept of CSP (Com-
municating Sequential Processes) [10, 11]. This feature
makes the Go-based NSQ distributed system well-suited
to the producer-consumer concurrency problem. There-
fore, it is becoming popular within businesses and has
also attracted the attention of researchers.

NSQ is suitable for distributed applications and sys-
tems that require asynchronous messaging, such as Social
Media, Gaming, and other industries that require high
concurrency. Until now, existing studies primarily fo-
cus on comparing different message queues performance,
operability, and other characteristics [8] or delve into
practical applications of NSQ [7]. To the best of our
knowledge, there has yet to be research about the verifi-
cation of its properties, which are significant for users.
And the fundamental attributes of the system still need
to be proven.

Employing a formal verification approach to verify
NSQ’s fundamental properties offers rigorous proof and

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

mailto:51215902076@stu.ecnu.edu.cn
mailto:jqyin@nwpu.edu.cn
mailto:52265902002@stu.ecnu.edu.cn
mailto:hbzhu@sei.ecnu.edu.cn
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: An Instance of the NSQ System

assurance, ensuring the system’s correctness, reliability,
and stability. This approach enhances confidence and
credibility in the design, implementation, and deploy-
ment of the system, which is paramount for developers
and users. Consequently, this paper bridges this research
gap by adopting formal methods to analyze the NSQ sys-
tem. We utilize process algebra CSP to formally model
the core functional modules and basic workflow of the
NSQ such as message publishing, subscription, registra-
tion, and querying. Subsequently, leveraging the model
checker PAT [12], we verify five properties of the model,
including Divergence Freedom, Reachability, Scalability,
Availability, and Flow Controllability. Experimental re-
sults demonstrate that the NSQ distributed message plat-
form can guarantee all these properties, proving that the
system has outstanding flexibility and robustness.

The remainder of this paper is organized as follows.
Section II briefly describes the NSQ system and process
algebra CSP. In Section III, we use CSP to model four
fundamental components in the NSQ message system.
Furthermore, in Section IV, we employ the model check-
ing tool PAT to implement the constructed models and
verify five properties we defined. Finally, we summarize
this paper and discuss future work in Section V.

2. BACKGROUND
In this section we give a brief description of the NSQ’s
architecture and process algebraic language CSP.

2.1. NSQ - New Simple Queue
A typical architecture of the NSQ system is displayed in
Fig. 1. Before furthering into the transmission mechanism
of the NSQ, we should familiar with the following terms:
• nsqd: The NSQ daemon responsible for receiving and

delivering messages. nsqd instances manage the actual
message storage and distribution.

• nsqlookupd: The NSQ lookup daemon that manages
topology information. It receives registration informa-
tion and provides service discovery.

• Topic: It is a distinct stream of messages. An NSQ
instance can have multiple Topics, each of which can
have one or more Channels.

• Channel: It is a logical grouping of consumers sub-
scribed to a given Topic. Each Channel receives a copy
of all the messages for that Topic.

The Topic and Channel in the NSQ system are imple-
mented by Go’s channel data type. Go-chan builds on the
idea of channel in CSP, it allows data transfers and syn-
chronization operations between concurrent processes.
A channel with cache space are also the natural way to
express queue structure. Therefore, essentially NSQ’s
Topic/Channel is a buffered queue for message.

After learning the basic terms, we can introduce the
NSQ system further from two core workflows: Message
multi-cast and Message consumption.

2.1.1. Message Multi-cast
NSQ designs nsqd to handle multiple data streams con-
currently. Each Topic can have one or more Channels.
Topics multicast the received messages to Channels, and
each Channel receives copies of messages. In practice,
Channels map to downstream services that subscribe the
Topics. Topics and Channels are not preconfigured but
are created upon the first publication or subscription.
Within nsqd, Topics and Channels independently buffer
data to prevent lagging consumers from affecting other
Channels. Messages are delivered to a randomly client
when all clients are ready, achieving load balancing.
2.1.2. Message Consumption

Unlike many conventional message queues, NSQ maxi-
mizes performance and throughout by pushing data to
the client instead of waiting for it to pull. This concept
is called the RDY (Ready) state, constituting a form of
client-side flow control. This RDY state is a pivotal perfor-
mance parameter, allowing clients to modulate message
by adjusting the RDY value. Once clients establish con-
nections and subscriptions, they assert control over the
flow of messages from nsqd by dynamically updating the
RDY value.

2.2. CSP
Process Algebra CSP [10, 11] is a formal mathematical
method that is widely applied in the design and verifi-
cation of concurrent systems. This language has been
successfully applied in modeling and verifying various
concurrent systems and protocols [13, 14]. Parts of the
CSP syntax used in this paper is defined as follows:

𝑃 , 𝑄 ::= 𝑆𝐾𝐼𝑃 | 𝑐?𝑢→ 𝑃 | 𝑐!𝑣→ 𝑃 | 𝑃□𝑄 | 𝑃 ||𝑄
| 𝑃 |||𝑄 | 𝑃 [|𝑋|]𝑄 | 𝑃◁𝐵▷𝑄 | 𝑃 ; 𝑄

• SKIP: The process terminates properly.

• 𝑐?𝑢→ 𝑃 : The process receives a value from channel
c and assigns it to variable u, then starts P.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

• 𝑐!𝑣 → 𝑃 : The process sends value v to channel c and
then starts executing process P.

• 𝑃□𝑄: It depicts a general choice between process P
and process Q.

• 𝑃 |||𝑄: It illustrates interleaving. Processes P and Q
run simultaneously and do not share any operations
or variables.

• 𝑃◁𝐵▷𝑄: It portrays the execution of process P if
the boolean expression b is true; otherwise, process
Q will be executed.

3. MODELING
In this section, we construct the model of NSQ distributed
architecture as illustrated in Fig. 1.

3.1. Sets, Messages and Channels
For a more detailed understanding of how the compo-
nents within the NSQ system communicate and inter-
act, we have laid out explanations for the fundamental
building blocks used in the model: Sets, Messages, and
Communication Channels.

Table 1
The correspondence between sets and constants/variables

Set Constant / Variable
Module P(Producer), C(Consumer), D(nsqd),LD(nsqlookupd)

ID
pid(producer ID), cid(consumer ID),

did(nsqid), lid(nsqlookupd ID),
tid(Topic ID), chid(Channel ID), msgid(message ID)

Command
FIN(Finish), REQ(Requeue), SUB(Subscribe), PUB(Publish),

REGISTER(Register),MSG(Message),REP(Response),
LOOKUPCHA(Lookup channel), LOOKUPD(Lookup nsqd)

Data chList(registered channel list),
dList(nsqd list with specific Topic)

ACK OK, OUTTIME

Figure 2: Channels of the NSQ System

Table 1 shows the definitions we defined for the rele-
vant sets employed in the modeling process. The Module
set contains all modules of the NSQ messaging system.
The ID set consists of unique identifiers for each object
within the system. Commands describe the instructions
managing interactions within the NSQ, such as message
publication (PUB) and subscription (SUB). The Data set
indicates the topological information queried by compo-
nents, and the Ack set is internal feedback.

Based on the above collections, we give the definition
of the Message transferred between components:

𝑀𝑆𝐺𝑟𝑒𝑞 = {𝑚𝑠𝑔𝑟𝑒𝑞 .𝐴.𝐵.𝐴𝑐𝑡𝑖𝑜𝑛.𝐶𝑜𝑛𝑡𝑒𝑛𝑡 |
𝐴 ∈ 𝑀𝑜𝑑𝑢𝑙𝑒,𝐵 ∈ 𝑀𝑜𝑑𝑢𝑙𝑒,

𝐴𝑐𝑡𝑖𝑜𝑛 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑,𝐶𝑜𝑛𝑡𝑒𝑛𝑡 ∈ 𝐼𝐷}
𝑀𝑆𝐺𝑟𝑒𝑝 = {𝑚𝑠𝑔𝑟𝑒𝑝.𝐴.𝐵.𝐴𝑐𝑡𝑖𝑜𝑛.𝐶𝑜𝑛𝑡𝑒𝑛𝑡 |

𝐴 ∈ 𝑀𝑜𝑑𝑢𝑙𝑒,𝐵 ∈ 𝑀𝑜𝑑𝑢𝑙𝑒,

𝐴𝑐𝑡𝑖𝑜𝑛 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑,

𝐶𝑜𝑛𝑡𝑒𝑛𝑡 ∈ {𝐼𝐷,𝐴𝐶𝐾,𝐷𝐴𝑇𝐴}}
𝑀𝑆𝐺𝑑𝑎𝑡𝑎 = {𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝐶𝑜𝑛𝑡𝑒𝑛𝑡 | 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 ∈ 𝐼𝐷}

𝑀𝑆𝐺𝑟𝑒𝑞 denotes the set of request messages,
𝑀𝑆𝐺𝑟𝑒𝑝 means the set of responses, and 𝑀𝑆𝐺𝑑𝑎𝑡𝑎 rep-
resents the set of transmitted data.

Next, we define the Channels responsible for communi-
cation between the modules and refer to these Channels
with the label 𝐶𝑂𝑀_𝑃𝐴𝑇𝐻 .

• ComCL: channels between consumer and nsqlookupd.

• ComPD: channels between producer and nsqd.

• ComDL: channels between nsqd and nsqlookupd.

• ComCD: channels between consumer and nsqd.

We also define the channels used internally by compo-
nents with the label 𝑀𝑆𝐺_𝑃𝐴𝑇𝐻 . These channels
have cache space and are responsible for caching mes-
sages. Fig. 2 shows all the channels we have defined.

• MsgTPC: message cache channels of Topics.

• MsgCHA: message cache channels of Channels.

• MsgCON: message cache channels of consumers.

3.2. Overall Modeling
The NSQ system embodies an intricate workflow. Due to
the page limit, we only present part of the core modeling
codes in this section.

The whole 𝑆𝑦𝑠𝑡𝑒𝑚() as below:

𝑆𝑦𝑠𝑡𝑒𝑚() =𝑑𝑓

|||𝑝𝑖𝑑∈𝑃𝐼𝐷,𝑑𝑖𝑑∈𝐷𝐼𝐷,𝑙𝑖𝑑∈𝐿𝐼𝐷,𝑐𝑖𝑑∈𝐶𝐼𝐷⎛⎝ 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑝𝑖𝑑 [|𝐶𝑂𝑀_𝑃𝐴𝑇𝐻|]𝑛𝑠𝑞𝑑𝑑𝑖𝑑
[|𝐶𝑂𝑀_𝑃𝐴𝑇𝐻|]𝑛𝑠𝑞𝑙𝑜𝑜𝑘𝑢𝑝𝑑𝑙𝑖𝑑
[|𝐶𝑂𝑀_𝑃𝐴𝑇𝐻|]𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑐𝑖𝑑

⎞⎠

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

It describes the concurrent model where producers,
nsqds, nsqlookupds, and consumers run in parallel and
collaborate over the [|𝐶𝑂𝑀_𝑃𝐴𝑇𝐻|] channels. The
𝑝𝑖𝑑 denotes the producer ID, and 𝑃𝐼𝐷 means the set of
𝑝𝑖𝑑. Other characters such as 𝑑𝑖𝑑, 𝑙𝑖𝑑 are similar.

3.3. Producer
The producer is responsible for generating and sending
messages to corresponding Topics. It communicates with
the nsqd directly and publishes messages to the nsqd
module through the 𝐶𝑜𝑚𝑃𝐷𝑖 channel.

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑝𝑖𝑑() =𝑑𝑓⎛⎜⎜⎜⎜⎝
𝐶𝑜𝑚𝑃𝐷𝑖!𝑚𝑠𝑔𝑟𝑒𝑞 .𝑝𝑖𝑑.𝑑𝑖𝑑.𝑃𝑈𝐵.𝑡𝑖𝑑.𝑀𝑆𝐺𝐼𝐷 →
𝐶𝑜𝑚𝑃𝐷𝑖?𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑝𝑖𝑑.𝑅𝐸𝑃.𝑚𝑠𝑔𝑖𝑑.𝑂𝐾 →
𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠 {𝑃𝑚𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠[𝑚𝑠𝑔𝑖𝑑] == 1; } ;(︂

𝑆𝐾𝐼𝑃 ◁𝑚𝑠𝑔𝑖𝑑 == 1▷
𝑛𝑒𝑥𝑡𝑀𝑠𝑔{𝑀𝑆𝐺𝐼𝐷 ++; } → 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑝𝑖𝑑()

)︂
⎞⎟⎟⎟⎟⎠

◁ 𝑝𝑖𝑑 == 0▷⎛⎜⎜⎜⎜⎜⎝
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑝𝑖𝑑()
◁𝑃𝑚𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠[0] == 1&&𝑃𝑚𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠[1] == 1▷⎛⎜⎜⎝

𝐶𝑜𝑚𝑃𝐷𝑖!𝑚𝑠𝑔𝑟𝑒𝑞 .𝑝𝑖𝑑.𝑑𝑖𝑑.𝑃𝑈𝐵.𝑡𝑖𝑑.2 →
𝐶𝑜𝑃𝐷𝑖?𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑝𝑖𝑑.𝑅𝐸𝑃.2.𝑂𝐾 →
𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠 {𝑃𝑚𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠[2] == 1; }
→ 𝑆𝐾𝐼𝑃

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠ ;

We define two type 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑖𝑑. 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟0 sends
messages with message id 0, 1 while 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟1 with
id 2. The producers publish three messages to simulate
the practical operation of the NSQ. Furthermore, we re-
strict that 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟1 must wait for 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟0 to finish
sending before it sends the message.

3.4. nsqd
The nsqd is daemon that receives, queues, and delivers
messages to clients. It handles multiple streams of data
at once through the unique design of Topic and Channel.
We modeled three core functions of nsqd.

The entire nsqd process execute as flowing:

𝑁𝑠𝑞𝑑𝑑𝑖𝑑() =𝑑𝑓

𝐸𝑥𝑒𝑐𝐿𝑜𝑜𝑝𝑑𝑖𝑑()|||𝑚𝑠𝑔𝑃𝑢𝑚𝑝𝑑𝑖𝑑()|||𝑚𝑠𝑔𝑃𝑢𝑠ℎ𝑑𝑖𝑑();

The 𝐸𝑥𝑒𝑐𝐿𝑜𝑜𝑝𝑑𝑖𝑑() is the main execution loop that
drives the core functions of the NSQ daemon. It is respon-
sible for constantly listens requests from other compo-
nents and processes them according to predefined logic.
We model four basic command handling logics, including
𝑅𝐸𝑄, 𝑆𝑈𝐵, 𝑃𝑈𝐵 and 𝐹𝐼𝑁 .

Multicasting and delivery of messages is a core func-
tion of nsqd. The relationship between Topics and
Channels is established through multicast, ensuring that
each Channel receives a copy of all messages associated
with a given Topic. This logic is implemented by the
𝑚𝑠𝑔𝑃𝑢𝑚𝑝𝑑𝑖𝑑() process.

𝑚𝑠𝑔𝑃𝑢𝑠ℎ𝑑𝑖𝑑() is responsible for pushing messages
to clients by load balancing strategy. In the NSQ mes-
saging system, this strategy is achieved by employing
a random distribution strategy, wherein messages are
randomly dispatched to clients subscribed to the same
Channel. 𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] signifies the number of messages
𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑖𝑑 can process from a specific 𝑛𝑠𝑞𝑑𝑖𝑑. We use
the 𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑[𝑐𝑖𝑑] array to mark whether 𝑛𝑠𝑞𝑑𝑑𝑖𝑑
is in the state of pushing messages to 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑐𝑖𝑑. nsqd
only sends messages to clients who can process messages.
We model this process using the General Choice in CSP.

𝐸𝑥𝑒𝑐𝐿𝑜𝑜𝑝𝑑𝑖𝑑() =𝑑𝑓⎛⎜⎜⎜⎜⎜⎝
𝐶𝑜𝑚𝑃𝐷𝑖?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑝𝑖𝑑.𝑑𝑖𝑑.𝑃𝑈𝐵.𝑡𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →(︂

𝑐𝑟𝑒𝑎𝑡𝑇𝑜𝑝𝑖𝑐(𝑑𝑖𝑑, 𝑡𝑖𝑑)
◁𝐷𝑇𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑[𝑡𝑖𝑑] == 0▷ 𝑆𝐾𝐼𝑃

)︂
;

𝑀𝑠𝑔𝑇𝑃𝐶𝑗 !𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝑡𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →
𝐶𝑜𝑚𝑃𝐷𝑖!𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑝𝑖𝑑.𝑅𝐸𝑃.𝑚𝑠𝑔𝑖𝑑.𝑂𝐾 →
𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎠
□⎛⎝ 𝐶𝑜𝑚𝐶𝐷𝑘?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑑𝑖𝑑.𝐹𝐼𝑁.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →

𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑠𝑔{𝐷𝑀𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑,𝑡𝑖𝑑,𝑐ℎ𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] = −1} →
𝑆𝐾𝐼𝑃

⎞⎠
□⎛⎜⎜⎝

𝐶𝑜𝑚𝐶𝐷𝑘?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑑𝑖𝑑.𝑅𝐸𝑄.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →
𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑠𝑔{𝐷𝑀𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑,𝑡𝑖𝑑,𝑐ℎ𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] + +} →
𝑀𝑠𝑔𝐶𝐻𝐴𝑙!𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →
𝑆𝐾𝐼𝑃

⎞⎟⎟⎠
□⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶𝑜𝑚𝐶𝐷𝑘?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑑𝑖𝑑.𝑆𝑈𝐵.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑 →⎛⎜⎜⎝
𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑜𝑝𝑖𝑐(𝑑𝑖𝑑, 𝑡𝑖𝑑);
𝑢𝑝𝑑𝑎𝑡𝑒𝐶ℎ𝑎𝑛𝑛𝑒𝑙{

𝐷𝐶ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑,𝑡𝑖𝑑[𝑐ℎ𝑖𝑑] = 1; } →
𝑁𝑜𝑡𝑖𝑓𝑦(𝑑𝑖𝑑, 𝑡𝑖𝑑, 𝑐𝑖𝑑)

⎞⎟⎟⎠
◁𝐷𝑇𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑[𝑡𝑖𝑑] == 0▷⎛⎜⎜⎝

⎛⎝ 𝑢𝑝𝑑𝑎𝑡𝑒𝐶ℎ𝑎𝑛𝑛𝑒𝑙{
𝐷𝐶ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑,𝑡𝑖𝑑[𝑐ℎ𝑖𝑑] = 1; } →

𝑁𝑜𝑡𝑖𝑓𝑦(𝑑𝑖𝑑, 𝑡𝑖𝑑, 𝑐𝑖𝑑)

⎞⎠
◁𝐷𝐶ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑,𝑡𝑖𝑑[𝑐ℎ𝑖𝑑] == 0▷ 𝑆𝐾𝐼𝑃

⎞⎟⎟⎠
𝑎𝑑𝑑𝐶𝑙𝑖𝑒𝑛𝑡{𝑇𝐶ℎ2𝐶𝑑𝑖𝑑,𝑡𝑖𝑑,𝑐ℎ𝑖𝑑[𝑐𝑖𝑑] = 1;]} →
𝑝𝑢𝑚𝑝𝑀𝑠𝑔{𝑠𝑡𝑎𝑟𝑡𝑀𝑠𝑔𝑃𝑢𝑚𝑝𝑑𝑖𝑑[𝑡𝑖𝑑] = 1; } →
𝐶𝑜𝑚𝐶𝐷𝑘!𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑐𝑖𝑑.𝑅𝐸𝑃.𝑆𝑈𝐵.𝑂𝐾 →
𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

𝐸𝑥𝑒𝑐𝐿𝑜𝑜𝑝𝑑𝑖𝑑();

𝑚𝑠𝑔𝑃𝑢𝑠ℎ𝑑𝑖𝑑() =𝑑𝑓

□
𝑐𝑖𝑑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
𝑀𝑠𝑔𝐶𝐻𝐴𝑖?𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑

{𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑[𝑐𝑖𝑑] = 1; } →
𝐶𝑜𝑚𝐶𝐷𝑗 !𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑐𝑖𝑑.

𝑀𝑆𝐺.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑
{𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑[𝑐𝑖𝑑] = 0; } →

𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎠
◁

(︂
𝑇𝐶ℎ2𝐶𝑑𝑖𝑑,𝑡𝑖𝑑,𝑐ℎ𝑖𝑑[𝑐𝑖𝑑] == 1
& 𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] > 0

)︂
▷

𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

𝑚𝑠𝑔𝑃𝑢𝑠ℎ𝑑𝑖𝑑();

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

3.5. nsqlookupd
The nsqlookupd daemon manages the system’s topology
information. nsqlookupd provides discovery and registra-
tion services, which decouple consumers from producers.
The formal modeling of nsqlookupd is as follows.

𝑛𝑠𝑞𝑙𝑜𝑜𝑘𝑢𝑝𝑑𝑙𝑖𝑑() =𝑑𝑓

𝐿𝑜𝑜𝑘𝑢𝑝𝑙𝑖𝑑() ||| 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑙𝑖𝑑() ||| 𝐸𝑟𝑟𝑜𝑟𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑙𝑖𝑑();

The 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑙𝑖𝑑() process handles the registration
requests sent by nsqd through the 𝐶𝑜𝑚𝐶𝐷𝑖 chan-
nel,and record nsqd instance by 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑[𝑑𝑖𝑑].
𝐿𝑇𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑[𝑡𝑖𝑑] stores all the registered Topics on
the nsqlookupd, and 𝑇2𝐷𝑙𝑖𝑑[𝑡𝑖𝑑][𝑑𝑖𝑑] holds the cor-
responding nsqd addresses for each Topic. Similarly,
𝐿𝐶ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑,𝑡𝑖𝑑[𝑐ℎ𝑖𝑑] and 𝑇𝐶2𝐷𝑙𝑖𝑑[𝑡𝑖𝑑][𝑐ℎ𝑖𝑑][𝑑𝑖𝑑]
serve same functions for Channels.

𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑙𝑖𝑑() =𝑑𝑓

𝐶𝑜𝑚𝐷𝐿𝑖?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑑𝑖𝑑.𝑙𝑖𝑑.𝑅𝐸𝐺𝐼𝑆𝑇𝐸𝑅.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑 →
𝑎𝑑𝑑𝑛𝑠𝑞𝑑{𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑[𝑑𝑖𝑑] = 1; } →⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝ 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑇𝑜𝑝𝑖𝑐{
𝐿𝑇𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑[𝑡𝑖𝑑] = 1;
𝑇2𝐷𝑙𝑖𝑑[𝑡𝑖𝑑][𝑑𝑖𝑑] = 1; } → 𝑆𝐾𝐼𝑃

⎞⎠
◁𝑐ℎ𝑖𝑑 == −1▷⎛⎜⎜⎜⎜⎜⎝

𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑇𝑜𝑝𝑖𝑐𝐴𝑛𝑑𝐶ℎ𝑎𝑛{
𝐿𝑇𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑[𝑑𝑖𝑑] = 1;
𝐿𝐶ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑,𝑡𝑖𝑑[𝑐ℎ𝑖𝑑] = 1;
𝑇2𝐷𝑙𝑖𝑑[𝑡𝑖𝑑][𝑑𝑖𝑑] = 1;
𝑇𝐶2𝐷𝑙𝑖𝑑[𝑡𝑖𝑑][𝑐ℎ𝑖𝑑][𝑑𝑖𝑑] = 1; } →

𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑙𝑖𝑑();

𝐿𝑜𝑜𝑘𝑢𝑝𝑙𝑖𝑑() formalizes nsqlookupd’s responses to
queries from consumers and nsqd instances using Gen-
eral Choice. 𝑙𝑜𝑜𝑘𝑝𝑛𝑠𝑞𝑑(𝑙𝑖𝑑, 𝑡𝑖𝑑) provides all the stored
nsqd address information associated with a specific Topic
in nsqlookupd. Similarly, the 𝑙𝑜𝑜𝑘𝑢𝑝𝐶ℎ𝑎𝑛𝑛𝑒𝑙(𝑙𝑖𝑑, 𝑡𝑖𝑑)
returns Channels list under the specified Topic.

𝐿𝑜𝑜𝑘𝑢𝑝𝑙𝑖𝑑() =𝑑𝑓⎛⎜⎜⎝
𝐶𝑜𝑚𝐶𝐿𝑖?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑙𝑖𝑑.𝐿𝑂𝑂𝐾𝑈𝑃𝐷.𝑡𝑖𝑑 →
𝑙𝑜𝑜𝑘𝑢𝑝𝑛𝑠𝑞𝑑(𝑙𝑖𝑑, 𝑡𝑖𝑑);
𝐶𝑜𝑚𝐶𝐿𝑖!𝑚𝑠𝑔𝑟𝑒𝑝.𝑙𝑖𝑑.𝑐𝑖𝑑.𝑅𝐸𝑃.𝑡𝑖𝑑.𝑑𝑙𝑖𝑠𝑡 →
𝑆𝐾𝐼𝑃

⎞⎟⎟⎠
□⎛⎜⎜⎝

𝐶𝑜𝑚𝐷𝐿𝑖?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑑𝑖𝑑.𝑙𝑖𝑑.𝐿𝑂𝑂𝐾𝑈𝑃𝐶𝐻𝐴.𝑡𝑖𝑑 →
𝑙𝑜𝑜𝑘𝑢𝑝𝐶ℎ𝑎𝑛𝑛𝑒𝑙(𝑙𝑖𝑑, 𝑡𝑖𝑑);
𝐶𝑜𝑚𝐷𝐿𝑖!𝑚𝑠𝑔𝑟𝑒𝑝.𝑙𝑖𝑑.𝑑𝑖𝑑.𝑅𝐸𝑃.𝑡𝑖𝑑.𝑐ℎ𝑙𝑖𝑠𝑡 →
𝑆𝐾𝐼𝑃

⎞⎟⎟⎠ ;

𝐿𝑜𝑜𝑘𝑢𝑝𝑙𝑖𝑑();

We also modeled the response of nsqlookupd to con-
nection errors. When nsqlookupd encounters connec-
tion timeouts with nsqd, it will receive 𝑂𝑈𝑇𝑇𝐼𝑀𝐸

signal through 𝐶𝑜𝑚𝐷𝐿𝑖 and then remove all informa-
tion associated with the corresponding nsqd from its
records. This process ensures that the information stored
on nsqlookupd remains consistently available.

3.6. Consumer
When a consumer is initiated, it queries nsqlookupd for
the addresses of nsqd instances associated with the target
Topics. Upon receiving the addresses, it subscribes to all
of these instances. Only after these can the consumer
activate processes for message retrieval and processing.

Therefore, the modeling of consumer is as follows:

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑐𝑖𝑑,𝑡𝑖𝑑,𝑐ℎ𝑖𝑑() =𝑑𝑓

𝐶𝑜𝑛𝑛𝑇𝑜𝐿𝑜𝑜𝑘𝑢𝑝𝑑𝑠𝑐𝑖𝑑,𝑡𝑖𝑑();

(𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑐𝑖𝑑() ||| 𝑅𝑒𝑎𝑑𝐿𝑜𝑜𝑝𝑐𝑖𝑑()) ;

𝐶𝑜𝑛𝑛𝑇𝑜𝐿𝑜𝑜𝑘𝑢𝑝𝑑𝑠𝑐𝑖𝑑,𝑡𝑖𝑑() =𝑑𝑓

𝐿𝑂𝑂𝑃 (𝑙𝑖𝑑 : 0..𝐿𝐷) :

𝑆𝐾𝐼𝑃 ◁ 𝑎𝑑𝑑𝑟𝐿𝑜𝑜𝑘𝑢𝑝𝑑[𝑙𝑖𝑑] == 0▷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎𝑑𝑑𝐿𝐷{𝐶𝐿𝑆𝑡𝑎𝑡𝑒𝑠𝑐𝑖𝑑[𝑙𝑖𝑑] = 1; } →
𝑐𝑜𝑢𝑛𝑡{𝑡𝑜𝑡𝑎𝑙𝐿𝐷 = 𝑐𝑜𝑢𝑛𝑡𝐿𝐷(𝑙𝑖𝑑, 𝑐𝑖𝑑); };⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐶𝑜𝑚𝐶𝐿𝑖!𝑚𝑠𝑔𝑟𝑒𝑞 .
𝑐𝑖𝑑.𝑙𝑖𝑑.𝐿𝑂𝑂𝐾𝑈𝑃𝐷.𝑡𝑖𝑑 →

𝐶𝑜𝑚𝐶𝐿𝑖?𝑚𝑠𝑔𝑟𝑒𝑝.
𝑙𝑖𝑑.𝑐𝑖𝑑.𝑅𝐸𝑃.𝑡𝑖𝑑.𝑑𝑙𝑖𝑠𝑡 →

𝐿𝑂𝑂𝑃 (𝑑𝑖𝑑 : 0..𝐷) :(︂
𝐶𝑜𝑛𝑛𝑇𝑜𝑁𝑠𝑞𝑑𝑐𝑖𝑑,𝑑𝑖𝑑,𝑡𝑖𝑑()
◁𝑑𝑙𝑖𝑠𝑡[𝑑𝑖𝑑] == 1▷ 𝑆𝐾𝐼𝑃

)︂
;

⎞⎟⎟⎟⎟⎟⎟⎟⎠
◁𝑡𝑜𝑡𝑎𝑙𝐿𝐷 == 1▷ 𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

𝐶𝑜𝑛𝑛𝑇𝑜𝑁𝑠𝑞𝑑𝑐𝑖𝑑,𝑑𝑖𝑑,𝑡𝑖𝑑() =𝑑𝑓

𝑆𝐾𝐼𝑃 ◁ 𝐶𝐷𝑆𝑡𝑎𝑡𝑒𝑠𝑐𝑖𝑑[𝑑𝑖𝑑] == 1▷⎛⎜⎜⎝
𝐶𝑜𝑚𝐶𝐷𝑖!𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑑𝑖𝑑.𝑆𝑈𝐵.𝑡𝑖𝑑.𝑐2𝑐ℎ[𝑐𝑖𝑑] →
𝐶𝑜𝑚𝐶𝐷𝑖?𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑐𝑖𝑑.𝑅𝐸𝑃.𝑆𝑈𝐵.𝑂𝐾 →
𝑎𝑑𝑑𝑛𝑠𝑞𝑑{𝐶𝐷𝑆𝑡𝑎𝑡𝑒𝑠𝑐𝑖𝑑[𝑑𝑖𝑑] = 1; } →
𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝐷𝑌 {𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] = 1} → 𝑆𝐾𝐼𝑃

⎞⎟⎟⎠ ;

The above formula models the process of a con-
sumer connecting to nsqdlookupds and nsqds. The
consumer sends a 𝑆𝑈𝐵 request to the nsqd through
𝐶𝑜𝑚𝐶𝐷𝑖 channel. It records connection information
in 𝐶𝐷𝑆𝑡𝑎𝑡𝑒𝑠𝑐𝑖𝑑[𝑑𝑖𝑑] and updates the 𝑅𝑑𝑦𝑐𝑖𝑑 value of
𝑛𝑠𝑞𝑑𝑖𝑑. In the formula, the value of 𝑅𝑑𝑦𝑐𝑖𝑑 is set to
1, indicating the consumer’s readiness to process one
message from 𝑛𝑠𝑞𝑑𝑖.

𝑟𝑒𝑎𝑑𝐿𝑜𝑜𝑝𝑐𝑖𝑑() =𝑑𝑓

𝐶𝑜𝑚𝐶𝐷𝑖?𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑐𝑖𝑑.

𝑀𝑆𝐺.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑{𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑]−−; } →⎛⎜⎜⎜⎜⎜⎝

(︂
𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝐷𝑌 {𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] + +; } →
𝑅𝑒𝑎𝑑𝐿𝑜𝑜𝑝𝑐𝑖𝑑,𝑑𝑖𝑑,𝑡𝑖𝑑()

)︂
◁𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] == −1▷⎛⎝ 𝑀𝑠𝑔𝐶𝑂𝑁𝑗 !𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝑑𝑖𝑑.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑{

𝑚𝑠𝑔2𝑑𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] = 𝑑𝑖𝑑; } →
𝑅𝑒𝑎𝑑𝐿𝑜𝑜𝑝𝑐𝑖𝑑,𝑑𝑖𝑑,𝑡𝑖𝑑()

⎞⎠

⎞⎟⎟⎟⎟⎟⎠ ;

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

After completing the subscription, the consumer main-
tains a TCP connection with nsqd to be ready to receive
messages. The diminishing of 𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] value implies
a decrease in the amount of messages consumers can
handle. 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] keeps track of the mes-
sage attempts number. −1 signifies successful processing
and will release 𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑]. Otherwise, the message is
cached in the 𝑀𝑠𝑔𝐶𝑂𝑁𝑖 channel for further processing.

𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑐𝑖𝑑() is the message-handling module of the
consumer process. In our experiment, we use nonde-
terministic to model the message-processing behavior.
We also model aborting re-queuing when the message
attempts exceed the maximum value. 𝑀𝑎𝑥𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 de-
fines the maximum number of message attempts allowed
by the system.

𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑐𝑖𝑑() =𝑑𝑓

𝑀𝑠𝑔𝐶𝑂𝑁𝑖?𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝑑𝑖𝑑.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →⎛⎝ 𝐶𝑜𝑚𝐶𝐷𝑗 !𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑑𝑖𝑑.𝐹𝐼𝑁.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑{
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] = −1; } →

𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝐷𝑌 {𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] + +; } → 𝑆𝐾𝐼𝑃

⎞⎠
◁𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] > 𝑀𝑎𝑥𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠▷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝐶𝑜𝑚𝐶𝐷𝑗 !𝑚𝑠𝑔𝑟𝑒𝑞 .

𝑐𝑖𝑑.𝑑𝑖𝑑.𝐹𝐼𝑁.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑{
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] = −1; } →

𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝐷𝑌 {𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] + +; } → 𝑆𝐾𝐼𝑃

⎞⎟⎟⎠
⊓⎛⎜⎜⎝

𝐶𝑜𝑚𝐶𝐷𝑗 !𝑚𝑠𝑔𝑟𝑒𝑞 .
𝑐𝑖𝑑.𝑑𝑖𝑑.𝑅𝐸𝑄.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑{

𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] + +; } →
𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝐷𝑌 {𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] + +; } → 𝑆𝐾𝐼𝑃

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑐𝑖𝑑();

4. VERIFICATION
In this section, we use the model-checking tool PAT to
realize the formal model constructed in section III, and
verify its properties. At the same time, the results of
properties verification are also shown at the end.

4.1. Implementation
This part presents details of the modeling implementation
with the PAT tool, mainly concerning the definition of
constants, array variables and channels.

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑃 2; #𝑑𝑒𝑓𝑖𝑛𝑒 𝐶 2;

#𝑑𝑒𝑓𝑖𝑛𝑒 𝐷 2; #𝑑𝑒𝑓𝑖𝑛𝑒 𝐿𝐷 2;

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑇 1; #𝑑𝑒𝑓𝑖𝑛𝑒 𝐶𝐻𝐴 2;

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑀𝑠𝑔𝑁𝑢𝑚 3;

We define constants as above to materialize the archi-
tecture of the NSQ system in Fig. 1. 𝑃 , 𝐷, 𝐿𝐷, and 𝐶
represent the number of producer, nsqd, nsqlookupd, and
consumer. 𝑇 and 𝐶𝐻𝐴 denote that each nsqd has one

Topic and associated two Channels. 𝑀𝑠𝑔𝑁𝑢𝑚 defines
the number of messages.

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑃 2; #𝑑𝑒𝑓𝑖𝑛𝑒 𝐶 2;

#𝑑𝑒𝑓𝑖𝑛𝑒 𝐷 2; #𝑑𝑒𝑓𝑖𝑛𝑒 𝐿𝐷 2;

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑇 1; #𝑑𝑒𝑓𝑖𝑛𝑒 𝐶𝐻𝐴 2;

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑁𝑢𝑚 3;

In addition, We define some arrays to store system
information, which assists us in confirming the status of
processes. 𝑅𝑑𝑦[𝐶][𝐷] is used to record the number of
messages the consumer can process. 𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠[𝐷][𝐶]
marks whether the nsqd is in the state of pushing mes-
sages to the consumer. 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[𝐿𝐷][𝐷] logs informa-
tion about registered instances of nsqd on nsqlookupd.
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[𝐶][𝑀𝑠𝑔𝑁𝑢𝑚] tracks the status of messages
processed on the consumer.

Furthermore, we have implemented the relevant chan-
nels in PAT based on the definitions provided earlier. We
use multidimensional arrays to store channels between
different entities is to avoid resource contention.

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑜𝑚𝑃𝐷[𝑃][𝐷] 0;

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑜𝑚𝑃𝐷[𝑃][𝐷] 0;

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑀𝑠𝑔𝑇𝑃𝐶[𝐷][𝑇] 𝑀𝑠𝑔𝑁𝑢𝑚;

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑀𝑠𝑔𝐶𝐻𝐴[𝐷][𝑇][𝐶𝐻] 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑁𝑢𝑚;

The channel definitions can be categorized into two
types: 𝐶𝑂𝑀_𝑃𝐴𝑇𝐻 are used for inter-component
communication, where the channel size is set to 0
to achieve process synchronization. Cache channels
𝑀𝑆𝐺_𝑃𝐴𝑇𝐻 are used within components, where the
channel size is set to 𝑀𝑠𝑔𝑁𝑢𝑚. These channels are uti-
lized for process synchronization and message buffering.

Given that the NSQ message system operates with mul-
tiple producers, nsqds, nsqlookupds, and consumers, we
employ a combination of interleaving and loop functions
to realize the system’s implementation. The comprehen-
sive definition of the NSQ system is presented as follows.
|||𝑖 : {0..𝑁}@𝑃 (𝑖); statement means that multiple pro-
cesses 𝑃 (𝑖) run interspersed in the PAT.

𝑆𝑦𝑠𝑡𝑒𝑚() =

|||𝑝𝑖𝑑 : {0..𝑃 − 1}; 𝑑𝑖𝑑 : {0..𝐷 − 1}; 𝑙𝑑𝑖𝑑 : {0..𝐿𝐷 − 1};
𝑐𝑖𝑑 : {0..𝐶 − 1}; 𝑡𝑖𝑑 : {0..𝑇 − 1}; 𝑐ℎ𝑖𝑑 : {0..𝐶𝐻𝐴− 1}

@
(︂

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟(𝑝𝑖𝑑, 𝑡𝑖𝑑) ‖ 𝑛𝑠𝑞𝑑(𝑑𝑖𝑑) ‖
𝑛𝑠𝑞𝑙𝑜𝑜𝑘𝑢𝑝𝑑(𝑙𝑖𝑑) ‖ 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟(𝑐𝑖𝑑, 𝑡𝑖𝑑, 𝑐ℎ𝑖𝑑)

)︂

4.2. Properties Verification
In this section, we verify the properties of the constructed
model with the model checker PAT. These properties
present the flexibility and robustness of NSQ distributed
messaging platform.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

4.2.1. Divergence Freedom

In NSQ system, if messages can always flow and be han-
dled in the correct way as they should, avoiding invalid
or infinite loops, then we think the system is divergence
free. It is crucial for message systems because the correct-
ness and stability of the system depends on the correct
handling and delivery of messages.

PAT provides the primitive to verify the divergence
freedom of the system:

#𝑎𝑠𝑠𝑒𝑟𝑡 𝑆𝑦𝑠𝑡𝑒𝑚() 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑓𝑟𝑒𝑒;

4.2.2. Reachability

Data reachability is the basic property of message queue.
NSQ ensures at least one delivery of a message using the
𝐹𝐼𝑁 and 𝑅𝐸𝑄, but it does not guarantee data order. In
our experiment, we track the attempts of messages with
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[𝐶][𝑀𝑠𝑔𝑁𝑢𝑚], where the value of −1 indi-
cates the message is finished. Therefor, the definitions of
reachability and assertions are as follows:

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦{
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[0][0] == −1 && 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[1][0] == −1

&& 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[0][1] == −1 && 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[1][1] == −1

&& 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[0][2] == −1 && 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[1][2] == −1};
#𝑎𝑠𝑠𝑒𝑟𝑡 𝑆𝑦𝑠𝑡𝑒𝑚() |=<> 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦;

As the model we constructed has two consumers sub-
scribing to different Channels under the same Topic, each
consumer will receive a copy of all messages sent by pro-
ducers and finish them all eventually. Symbol <> means
that the system can finally reach 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 state.

4.2.3. Scalability

The NSQ system realizes a distributed decentralized ar-
chitecture with nsqlookupd, which shows scalability.
nsqlookupd manages the topological information of the
system and allows nsqd instances to be added for horizon-
tal scaling. In our experiments, the 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[𝐿𝐷][𝐷]
is initially set to 0, denoting that no nsqd instances are
available. When the value changes to 1, it indicates that
nsqd instances were dynamically added, demonstrating
the system’s scalability.

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦{
𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[0][0] == 1 && 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[0][1] == 1

&& 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[1][0] == 1 && 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[1][1] == 1};
#𝑎𝑠𝑠𝑒𝑟𝑡 𝑆𝑦𝑠𝑡𝑒𝑚() |=<> 𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦;

4.2.4. Availability

nsqlookupd serves as a distributed directory service that
supports fault tolerance and redundancy. It maintains

information about the available components of the sys-
tem forever, and when instances of nsqd are abnormal, it
deletes all information about the corresponding instances.
We defined a new system to verify the high availability
of NSQ. An 𝑂𝑈𝑇𝑇𝐼𝑀𝐸 event of 𝑛𝑠𝑞𝑑0 is added to the
original system, which will be triggered when all mes-
sages are finished.

𝑆𝑦𝑠𝑡𝑒𝑚2() = 𝑆𝑦𝑠𝑡𝑒𝑚()|||⎛⎜⎜⎝
|||𝑙𝑖𝑑 : {0..𝐿𝐷 − 1}

@

⎛⎝ [𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦]
𝐶𝑜𝑚𝐷𝐿𝑖!𝑚𝑠𝑔𝑟𝑒𝑞 .0.𝑙𝑖𝑑.
𝐸𝑅𝑅𝑂𝑅.𝑂𝑈𝑇𝑇𝐼𝑀𝐸 → 𝑆𝐾𝐼𝑃 ;

⎞⎠
⎞⎟⎟⎠

The above formula describes the new system, and we
verify in the PAT whether nsqlookupd maintains the list
of available nsqd. The definition and assertion are as
follows:

#𝑑𝑒𝑓𝑖𝑛𝑒 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦{
𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[0][0] == 0 && 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[0][1] == 1

&& 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[1][0] == 0 && 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[1][1] == 1};
#𝑎𝑠𝑠𝑒𝑟𝑡 𝑆𝑦𝑠𝑡𝑒𝑚2() |=<> 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦;

4.2.5. Flow Controllability

NSQ can dynamically adjust messages’ processing rate
by changing the consumer’s RDY value. To verify this
property, we need to demonstrate that nsqd can push
messages only if the consumer’s 𝑅𝐷𝑌 is greater than
0. Therefore, we introduce the 𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠[𝐷][𝐶] array
to store nsqds’ status, which indicate whether 𝑛𝑠𝑞𝑑𝑑𝑖𝑑
is pushing data to 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑐𝑖𝑑. Combined with the
𝑅𝑑𝑦[𝐶][𝐷] array, we give the following definition and
assertion.

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑅𝑒𝑎𝑑𝑦00 {𝑅𝑑𝑦[0][0] > 0};
#𝑑𝑒𝑓𝑖𝑛𝑒 𝑅𝑒𝑎𝑑𝑦 · · ·
#𝑑𝑒𝑓𝑖𝑛𝑒 𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝00 {𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠[0][0] = 0};
#𝑑𝑒𝑓𝑖𝑛𝑒 𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝 · · ·
#𝑎𝑠𝑠𝑒𝑟𝑡 𝑆𝑦𝑠𝑡𝑒𝑚() |=

(𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝00U𝑅𝑒𝑎𝑑𝑦00)

&&(𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝01U𝑅𝑒𝑎𝑑𝑦01)

&&(𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝10U𝑅𝑒𝑎𝑑𝑦10)

&&(𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝11U𝑅𝑒𝑎𝑑𝑦11);

Our model has four message subscription connections
as show in Fig.2. 𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝00 defines the state when
𝑛𝑠𝑞𝑑0 stops pushing messages to the 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟0, and
𝑅𝑒𝑎𝑑𝑦00 defines the state in which the 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟0 is
ready to receive messages from 𝑛𝑠𝑞𝑑0. The rest of defini-
tions are similar. We use the Untill(U) syntax from Linear
Timing Logic (LTL) to describe the event that the nsqd
stops pushing messages until the Rdy of the corresponding
consumer is larger than zero. This formula verifies if the
system can realize flow control.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

Figure 3: Verification Results of the NSQ System

4.3. Verification and Results
Depending on the definitions and assertions provided
above, we use model checker PAT to verify five proper-
ties of the NSQ system, including Divergence Freedom,
Reachability, Scalability, Availability, and Flow Control-
lability. The model checker PAT verifies properties by
searching for counterexamples in the system’s state space
or reaching the limits of state exploration.

We present a summary of the verification statistics
in Fig. 3, including Visited States, Total Transitions, Time
Used, and Estimated Memory Used.

The verification results of all five properties indicate
that the NSQ message queue satisfies all the above prop-
erties, proving that the system has high flexibility and
robustness while providing credible delivery of messages.

5. CONCLUSION AND FUTURE
WORK

In this paper, we focus on the core functionalities of the
NSQ message platform, including message publishing,
registration, subscription, and querying. With CSP, we
formalized critical components of the NSQ architecture,
such as producers, consumers, nsqd, and nsqlookupd.
Using the model checker PAT, we conducted a rigorous
analysis of the constructed NSQ model, verifying five fun-
damental properties: Divergence Freedom, Reachability,
Scalability, Availability, and Flow Controllability. These
properties underscore NSQ’s capacity to handle real-time
distributed message delivery at scale, confirming its high
flexibility and robustness while ensuring dependable mes-
sage transmission.

Nonetheless, besides the robustness of message queues,
the security of data is extremely important for users. In
the future, we will continue to enhance the formalized
modeling and verification of NSQ by refining workflows.
We will also delving into the system’s security aspects to
advance our research outcomes continually.

References
[1] Bernstein, P. A. (1996). Middleware: a model for

distributed system services. Communications of the
ACM, 39(2), 86-98.

[2] Snyder, B., Bosnanac, D., & Davies, R. (2011). Ac-
tiveMQ in action (Vol. 47). Greenwich Conn.: Man-
ning.

[3] Rostanski, M., Grochla, K., & Seman, A. (2014,
September). Evaluation of highly available and fault-
tolerant middleware clustered architectures using
RabbitMQ. In 2014 federated conference on computer
science and information systems (pp. 879-884). IEEE.

[4] Wang, G., Koshy, J., Subramanian, S., Paramasivam,
K., Zadeh, M., Narkhede, N., ... & Stein, J. (2015). Build-
ing a replicated logging system with Apache Kafka.
Proceedings of the VLDB Endowment, 8(12), 1654-
1655.

[5] Yue, M., Ruiyang, Y., Jianwei, S., & Kaifeng, Y. (2017,
October). A MQTT protocol message push server
based on RocketMQ. In 2017 10th International Con-
ference on Intelligent Computation Technology and
Automation (ICICTA) (pp. 295-298). IEEE.

[6] NSQ: A realtime distributed messaging platform,
https://nsq.io/

[7] Lai, X., Wang, H., Zhao, J., Zhang, F., Zhao, C.,
& Wu, G. (2020, May). HBase Connection Dynamic
Keeping Method Based on Reactor Pattern. In Jour-
nal of Physics: Conference Series (Vol. 1544, No. 1, p.
012122). IOP Publishing.

[8] Raje, S. N. (2019). Performance Comparison of Mes-
sage Queue Methods (Doctoral dissertation, Univer-
sity of Nevada, Las Vegas).

[9] Togashi, N., & Klyuev, V. (2014, April). Concurrency
in Go and Java: performance analysis. In 2014 4th
IEEE international conference on information science
and technology (pp. 213-216). IEEE.

[10] Brookes, S. D., Hoare, C. A. R, & Roscoe, A. W.
(1984). A theory of communicating sequential pro-
cesses. Journal of the ACM (JACM), 31(3), 560-599.

[11] Hoare, C. A. R. (1985). Communicating sequential
processes (Vol. 178). Englewood Cliffs: Prentice-hall.

[12] PAT: Process Analysis Toolkit. An Model Checker
and Refinement Checker for Concurrent and Real-
time System. https://pat.comp.nus.edu.sg/

[13] Xiao, L., Zhu, H., Xu, Q., & Vinh, P. C. (2022). Mod-
eling and verifying pso memory model using CSP.
Mobile Networks and Applications, 27(5), 2068-2083.

[14] Xu, J., Yin, J., Zhu, H., & Xiao, L. (2023). Formaliza-
tion and verification of Kafka messaging mechanism
using CSP. Computer Science and Information Sys-
tems, 20(1), 277-306.

QuASoQ 2023 Preprint

© 2023 Copyright for this paper by its authors

	Frontpage
	QuASoQ_2023_paper-05
	1 Introduction
	2 Related works
	2.1 Online/Offline Mode
	2.2 Emulation/Instrumentation
	2.3 Mitigating Path Explosion
	2.4 Memory Model

	3 The Design of Coyote C++
	3.1 Overview
	3.2 Design Decisions of Coyote C++

	4 Experimental Results
	4.1 Experiment on Open-Source Projects
	4.2 Results on Industry Projects

	5 Conclusion and Future Work

	QuASoQ_2023_paper-02
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Embedding with JavaBERT
	3.2 Feature Extraction using CNN-BiLSTM
	3.2.1 Feature Extraction with CNN
	3.2.2 Refinement of Features with BiLSTM

	3.3 Integration with Statistical Features
	3.4 Hyperparameter Optimization by Optuna

	4 Experimental Setup
	4.1 Research Questions
	4.2 Dataset and Data Preprocessing
	4.3 Experimental Settings
	4.4 Baseline Models

	5 Results and Discussion
	5.1 Impact of JavaBERT-based Embeddings with CNN-BiLSTM Model
	5.2 Model Performance Variability Across PROMISE Projects and Versions
	5.3 The impact of hyperparameters on the performance of CNN-BiLSTM model
	5.4 Threats to Validity

	6 Conclusion and Future Work

	QuASoQ_2023_paper-04
	1. Introduction
	1.1. Regulatory Framework for Medical Device Software in Thailand
	1.2. Medical Device Software Quality Assurance and Assessment Ecosystem

	2. Literature Review
	3. Medical Device Software Evaluation
	4. Experience-based Solution
	5. Conclusion
	References

	QuASoQ_2023_paper-07
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Dataset
	3.2 Source Code Corpora Generation
	3.3 Vulnerability Report Corpora
	3.4 Ranking Vulnerable Functions

	4 Experiment and Result Analysis
	4.1 Implementation
	4.2 Evaluation

	5 Threats to Validity
	6 Conclusion

	QuASoQ_2023_paper-03
	1 Introduction
	2 BACKGROUND
	2.1 NSQ - New Simple Queue
	2.1.1 Message Multi-cast
	2.1.2 Message Consumption

	2.2 CSP

	3 MODELING
	3.1 Sets, Messages and Channels
	3.2 Overall Modeling
	3.3 Producer
	3.4 nsqd
	3.5 nsqlookupd
	3.6 Consumer

	4 VERIFICATION
	4.1 Implementation
	4.2 Properties Verification
	4.2.1 Divergence Freedom
	4.2.2 Reachability
	4.2.3 Scalability
	4.2.4 Availability
	4.2.5 Flow Controllability

	4.3 Verification and Results

	5 CONCLUSION AND FUTURE WORK

